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Abstract
We examine the efficiency of using individual stocks or portfolios as base assets to test asset
pricing models using cross-sectional data. The literature has argued that creating portfolios
reduces idiosyncratic volatility and allows more precise estimates of factor loadings, and
consequently risk premia. We show analytically and empirically that smaller standard er-
rors of portfolio beta estimates do not lead to smaller standard errors of cross-sectional co-
efficient estimates. Factor risk premia standard errors are determined by the cross-sectional
distributions of factor loadings and residual risk. Portfolios destroy information by shrink-
ing the dispersion of betas, leading to larger standard errors.

I. Introduction
Asset pricing models should hold for all assets, whether these assets are

individual stocks or whether the assets are portfolios. The literature has taken two
different approaches in specifying the universe of base assets in cross-sectional
factor tests. First, researchers have followed Black, Jensen, and Scholes (1972)
and Fama and MacBeth (1973), among many others, to group stocks into port-
folios and subsequently run cross-sectional regressions using portfolios as base
assets. An alternative approach is to estimate cross-sectional risk premia using
the entire universe of stocks following Litzenberger and Ramaswamy (1979) and
others. Perhaps due to the easy availability of portfolios constructed by Fama and
French (1993) and others, the first method of using portfolios as test assets is the
more popular approach in recent empirical work.
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Blume ((1970), p. 156) gave the original motivation for creating test
portfolios of assets as a way to reduce the errors-in-variables (EIV) problem of
estimated betas as regressors when using individual stocks:

If an investor’s assessments of αi and βi were unbiased and the errors
in these assessments were independent among the different assets, his
uncertainty attached to his assessments of ᾱ and β̄, merely weighted
averages of the αi ’s and βi ’s, would tend to become smaller, the larger
the number of assets in the portfolios and the smaller the proportion in
each asset. Intuitively, the errors in the assessments of αi and βi would
tend to offset each other. . . . Thus, . . . the empirical sections will only
examine portfolios of twenty or more assets with an equal proportion
invested in each.

If the errors in the estimated betas are imperfectly correlated across assets,
then the estimation errors would tend to offset each other when the assets are
grouped into portfolios. Creating diversified portfolios allows for more precise
estimates of factor loadings. Blume (1970) argues that since betas are placed on
the right-hand side in cross-sectional regressions, the more precise estimates of
factor loadings for portfolios enable factor risk premia to also be estimated more
precisely. This intuition for using portfolios as base assets in cross-sectional tests
is echoed by other papers in the early literature, including Black et al. (1972) and
Fama and MacBeth (1973). The majority of modern asset pricing papers testing
expected return relations in the cross section now use portfolios.1

In this paper we study the relative efficiency of using individual stocks or
portfolios in tests of cross-sectional factor models. We focus on theoretical results
in a 1-factor setting, but also consider multifactor models. We illustrate the intu-
ition with analytical forms using maximum likelihood, but the intuition from these
formulae are applicable to more general situations.2 Maximum likelihood estima-
tors achieve the Cramér–Rao lower bound (Cramér (1946) and Rao (1945)) and
provide an optimal benchmark to measure efficiency.

Forming portfolios dramatically reduces the standard errors of factor load-
ings due to decreasing idiosyncratic risk. Estimating risk premia with more pre-
cise factor loadings will produce less biased risk premia estimates, ceteris paribus.
However, there is a tradeoff. In this paper, we show that the more precise estimates
of portfolio factor loadings do not lead to more efficient estimates of factor risk
premia. In a setting where all stocks have the same idiosyncratic risk, the idiosyn-
cratic variances of portfolios decline linearly with the number of stocks in each
portfolio. The fewer the number of portfolios used for a given number of stocks,
the smaller the standard errors of the portfolio factor loadings. But, fewer port-
folios also means that there is less cross-sectional variation in factor loadings to

1Fama and French (1992) use individual stocks but assign the stock beta to be a portfolio beta,
claiming to be able to use the more efficient portfolio betas but simultaneously using all stocks. We
show below that this procedure is equivalent to directly using portfolios.

2Jobson and Korkie (1982), Huberman and Kandel (1987), MacKinlay (1987), Gibbons, Ross,
and Shanken (1989), Zhou (1991), Shanken (1992), and Velu and Zhou (1999), among others, derive
small-sample or exact finite sample distributions of various maximum likelihood statistics but do not
consider efficiency using different test assets.
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Ang, Liu, and Schwarz 3

form factor risk premia estimates. Thus, the standard errors of the risk premia
estimatesincrease when portfolios are used compared to the case when all stocks
are used. The same result holds in richer settings where idiosyncratic volatili-
ties differ across stocks, idiosyncratic shocks are cross-sectionally correlated, and
there is stochastic entry and exit of firms in unbalanced panels. Creating port-
folios to reduce estimation error in the factor loadings does not lead to smaller
estimation errors of the factor risk premia.

The reason that creating portfolios leads to larger standard errors of cross-
sectional risk premia estimates is that creating portfolios destroys information. A
major determinant of the standard errors of estimated risk premia is the cross-
sectional distribution of risk factor loadings scaled by the inverse of idiosyncratic
variance. Intuitively, the more dispersed the cross section of betas, the more in-
formation the cross section contains to estimate risk premia. More weight is given
to stocks with lower idiosyncratic volatility as these observations are less noisy.
Aggregating stocks into portfolios shrinks the cross-sectional dispersion of betas.
Forming portfolios leaves the researcher with fewer factor loading estimates than
would be the case if the test assets had not been combined into portfolios. This
causes estimates of factor risk premia to be less efficient when portfolios are cre-
ated. We compute efficiency losses under several different assumptions, including
cross-correlated idiosyncratic risk and betas, and the entry and exit of firms. The
efficiency losses are large.

An early motivator for portfolio formation was the aim of reducing bias in
the risk premium point estimate by grouping stocks and thus reducing beta mea-
surement error. With a risk premium estimator that does not adjust for bias, the
tradeoff in bias versus efficiency changes with the number of portfolios. For a
given number of stocks, when fewer portfolios are formed, bias tends to diminish
but the estimator becomes less efficient. We use Monte Carlo simulations to com-
pare the relative efficiency and bias in several variations of our simple analytical
setting, over a range of portfolio sizes and individual stocks. Importantly, we find
that higher cross-sectional variation in factor loadings motivates grouping fewer
stocks into portfolios both on bias and efficiency grounds. Depending on the data
environment, our results argue for the use of either a large number of portfolios
(with few stocks in each portfolio) or individual stocks when estimating risk pre-
mia. In terms of mean square error, which incorporates both bias and efficiency
objectives, the case tilts in favor of individual stocks when estimation errors in
factor loadings are large or the variance in true factor loadings is low.

Our analysis on estimation efficiency complements Kim’s (1995) study of
the problem of bias in the point estimate. He proposes a maximum likelihood-
based correction for bias. Kim uses results on classical measurement error to ad-
just 2-pass Fama–MacBeth estimators for bias from EIV that is otherwise larger
when using stocks as test assets as compared to portfolios. When full-blown max-
imum likelihood estimation is used, there is no clear motivation for forming port-
folios, apart from the practical limits on feasible sample sizes (n<T ). Thus, risk
premium estimation methods that account for bias present the clearest case for
using individual stocks over portfolios due to the efficiency gains.

Finally, we empirically verify that using portfolios leads to wider standard
error bounds in estimates of 1-factor and 3-factor models using the Center for
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Research in Security Prices (CRSP) database of stock returns. We find that for
both a 1-factor market model and the Fama and French (1993) multifactor model
estimated using the full universe of stocks, factor risk premia are highly signifi-
cant. In contrast, using portfolios often produces insignificant estimates of factor
risk premia in both the 1-factor and 3-factor specifications.

Our paper focuses on the efficiency losses from forming portfolios. Still this
is by no means the only argument for using individual stocks. Lo and MacKinlay
(1990), Ferson, Sarkissian, and Simin (1999), (2003), and Berk (2000) emphasize
that the particular way in which stocks are grouped into portfolios is subject to
potential data snooping biases. For instance, sorting firms by characteristics that
are known to be correlated with returns in sample can affect risk premiums. Port-
folios formed on anomaly factors can embed spurious risk premiums. Grauer and
Janmaat (2004) show that portfolio grouping under the alternative when a factor
model is false may cause the model to appear correct. Likewise, Lewellen, Nagel,
and Shanken (2010) show that the Fama–French portfolios have a strong factor
structure which biases the researcher in favor of factor models. These problems
are all avoided by working with individual stocks, which takes away the potential
for data mining from the construction of portfolios. As emphasized by Campbell,
Lo, and MacKinlay (1997), data-mining difficulties are tough to circumvent com-
pletely. Still, avoiding the formation of portfolios as test assets removes a key
element of the problem.

We stress that our results do not mean that portfolios should never be used
to test factor models. In particular, many nonlinear procedures can only be esti-
mated using a small number of test assets. However, when firm-level regressions
specify factor loadings as right-hand side variables, which are estimated in first
stage regressions, creating portfolios for use in a second stage cross-sectional re-
gression leads to less efficient estimates of risk premia. Second, our analysis is
from an econometric, rather than from an investments, perspective. Finding in-
vestable strategies entails the construction of optimal portfolios. Finally, our set-
ting assumes that we are concerned with efficiency in a correctly-specified model.
A large amount of literature discusses misspecification tests in the presence of
spurious sources of risk (e.g. Kan and Zhang (1999), Kan and Robotti (2008),
Hou and Kimmel (2006), and Burnside (2016)), holding the number of test assets
fixed. However, this is not the setting considered in this paper. Other authors (e.g.
Zhou (1991), Shanken and Zhou (2007)) examine the small-sample performance
of various estimation approaches under both the null and alternative.3

Our paper is related to Kan (2004), who compares the explanatory power of
asset pricing models using stocks or portfolios. He defines explanatory power to
be the squared cross-sectional correlation coefficient between the expected return
and its counterpart specified by the model. Kan finds that the explanatory power
can increase or decrease with the number of portfolios. From the viewpoint of
Kan’s definition of explanatory power, it is not obvious that asset pricing tests
should favor using individual stocks. Unlike Kan, we consider the criterion of

3Other authors have presented alternative estimation approaches to maximum likelihood or the
2-pass methodology such as Brennan, Chordia, and Subrahmanyam (1998), who run cross-sectional
regressions on all stocks using risk-adjusted returns as dependent variables.
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Ang, Liu, and Schwarz 5

statistical efficiency in a standard cross-sectional linear regression setup. We also
show that using portfolios versus individual stocks matters in actual data.

The rest of this paper is organized as follows: Section II presents the econo-
metric theory and derives standard errors concentrating on the 1-factor model.
We describe the data and compute the effects on efficiency and bias when using
portfolios as opposed to individual stocks in Section III. Section IV compares the
performance of portfolios versus stocks in the CRSP database. Finally, Section V
concludes.

II. Econometric Setup

A. The Model and Hypothesis Tests
We work with the following 1-factor model (and consider multifactor gener-

alizations later):

(1) Ri t = α+βiλ+βi Ft + σiεi t ,

where Ri t , for i=1, . . . , N and t=1, . . . , T , is the excess (over the risk-free rate)
return of stock i at time t , and Ft is the factor which has 0 mean and variance
σ 2

F . In Section II.D below, we shall allow for the factor mean to be nonzero (Kan
and Zhou (1999), Jagannathan and Wang (2002)) both highlight the impact of the
estimation of the factor mean). We specify the shocks εi t to be IID N (0,1) over
time t but allow cross-sectional correlation across stocks i and j . We concentrate
on the 1-factor case as the intuition the is easiest to understand and present results
for multiple factors in the Appendix. In the 1-factor model, the risk premium of
asset i is a linear function of stock i’s beta:

(2) E(Ri t ) = α+βiλ.

This is the beta representation estimated by Black et al. (1972) and Fama and
MacBeth (1973). In vector notation we can write equation (1) as

(3) Rt = α1+βλ+βFt +�
1/2
ε
εt ,

where Rt is an N×1 vector of stock returns, α is a scalar, 1 is an N×1 vector
with each component equal to 1, β= (β1 . . . βN )′ is an N×1 vector of betas, �ε is
an N×N invertible covariance matrix, and εt is an N×1 vector of idiosyncratic
shocks where εt∼N (0, IN ).4

Asset pricing theories impose various restrictions on α and λ in equa-
tions (1)–(3). Let the 0-beta expected return equal the risk free rate,

(4) H α=0
0 : α = 0.

A rejection of H α=0
0 means that the factor cannot explain the average level of

stock returns in excess of the risk free rate. This is often the case for factors based

4The majority of cross-sectional studies do not employ adjustments for cross-sectional correlation,
such as Fama and French (2008). We account for cross-sectional correlation in our empirical work in
Section IV.
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6 Journal of Financial and Quantitative Analysis

on consumption-based asset pricing models because of the Mehra and Prescott
(1985) equity premium puzzle, where a very high implied risk aversion is neces-
sary to match the overall equity premium.

However, even though a factor cannot price the overall market, it could still
explain the relative prices of assets if it carries a nonzero price of risk. We say the
factor Ft is priced with a risk premium if we can reject the hypothesis:

(5) H λ=0
0 : λ = 0.

A simultaneous rejection of both H α=0
0 and H λ=0

0 economically implies that we
cannot fully explain the overall level of returns (the rejection of H α=0

0 ), but ex-
posure to Ft accounts for some of the expected returns of assets relative to each
other (the rejection of H λ=0

0 ). By far the majority of studies investigating deter-
minants of the cross section of stock returns try to reject H λ=0

0 by finding factors
where differences in factor exposures lead to large cross-sectional differences in
stock returns. Well-known examples of such factors include aggregate volatility
risk (Ang, Hodrick, Xing, and Zhang (2006)), liquidity (Pástor and Stambaugh
(2003)), labor income (Santos and Veronesi (2006)), aggregate investment, and
innovations in other state variables based on consumption dynamics (Lettau and
Ludvigson (2001)), among many others. All these authors reject the null H λ=0

0 ,
but do not test whether the set of factors is complete by testing H α=0

0 .
In Appendix A, we derive the statistical properties of the estimators of α, λ,

and βi in equations (1)–(2). We present results for maximum likelihood and con-
sider a general setup with Generalized Method of Moments (GMM), which nests
the 2-pass procedures developed by Fama and MacBeth (1973), in Appendix B.
The maximum likelihood estimators are consistent, asymptotically efficient, and
analytically tractable. We derive in closed-form the Cramér–Rao lower bound,
which achieves the lowest standard errors of all consistent estimators. This is a
natural benchmark to measure efficiency losses. An important part of our results
is that we are able to derive explicit analytical formulas for the standard errors.
Thus, we are able to trace where the losses in efficiency arise from using portfo-
lios versus individual stocks. In Sections III and IV, we take this intuition to the
data and show empirically that in actual stock returns, efficiency losses are greater
with portfolios.

B. Likelihood Function
The log-likelihood of equation (3) is given by

(6) L = −

∑
t

(Rt −α−β(Ft + λ))′�−1
ε

(Rt −α−β(Ft + λ)),

ignoring the constant and the determinant of the covariance terms. For notational
simplicity, we assume that σF and �ε are known.5 We are especially interested

5Consistent estimators are given by the sample formulas

σ̂ 2
F =

1
T

∑
t

F2
t ,

�̂ε =
1
T

∑
t

(Rt − α̂− β̂(Ft + λ̂))(Rt − α̂− β̂(Ft + λ̂))′.
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Ang, Liu, and Schwarz 7

in the cross-sectional parameters (αλ), which can only be identified using the
cross section of stock returns. The factor loadings, β, must be estimated and not
taking the estimation error into account results in incorrect standard errors of the
estimates of α and λ. Thus, our parameters of interest are2= (αλβ). This setting
permits the testing of H α=0

0 and H λ=0
0 . In Appendix A, we state the maximum

likelihood estimators, 2̂.

C. Standard Errors

The standard errors of the maximum likelihood estimators α̂, λ̂, and β̂ are
determined using

var(α̂) =
1
T
σ 2

F + λ
2

σ 2
F

β ′�−1
ε
β

(1′�−1
ε

1)(β ′�−1
ε
β)− (1′�−1

ε
β)2

,(7)

var(λ̂) =
1
T
σ 2

F + λ
2

σ 2
F

1′�−1
ε

1
(1′�−1

ε
1)(β ′�−1

ε
β)− (1′�−1

ε
β)2

,(8)

var(β̂) =
1
T

1
λ2+ σ 2

F

(9)

×

[
�ε +

λ2

σ 2
F

(β ′�−1
ε
β)11′− (1′�−1

ε
β)β1′− (1′�−1

ε
β)1β ′+ (1′�−1

ε
1)ββ ′

(1′�−1
ε

1)(β ′�−1
ε
β)− (1′�−1

ε
β)2

]
.

We provide a full derivation in Appendix A.
To obtain some intuition, consider the case where idiosyncratic risk is uncor-

related across stocks, such that �ε is diagonal with elements {σ 2
i }. We define the

following cross-sectional sample moments, which we denote with a subscript c
to emphasize they are cross-sectional moments and the summations are across N
stocks:

Ec(β/σ 2) =
1
N

∑
j

β j

σ 2
j

,(10)

Ec(β2/σ 2) =
1
N

∑
j

β2
j

σ 2
j

,

Ec(1/σ 2) =
1
N

∑
j

1
σ 2

j

,

varc(β/σ 2) =

(
1
N

∑
j

β2
j

σ 4
j

)
−

(
1
N

∑
j

β j

σ 2
j

)2

,

covc(β2/σ 2,1/σ 2) =

(
1
N

∑
j

β2
j

σ 4
j

)
−

(
1
N

∑
j

β2
j

σ 2
j

)(
1
N

∑
j

1
σ 2

j

)
.

In the case of uncorrelated idiosyncratic risk across stocks, the standard
errors of α̂, λ̂, and β̂i in equations (7)–(9) simplify to:

var(α̂) =
1

N T
σ 2

F + λ
2

σ 2
F

Ec(β2/σ 2)
varc(β/σ 2)− covc(β2/σ 2,1/σ 2)

,(11)

var(λ̂) =
1

N T
σ 2

F + λ
2

σ 2
F

Ec(1/σ 2)
varc(β/σ 2)− covc(β2/σ 2,1/σ 2)

,(12)

https://doi.org/10.1017/S0022109019000255
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . U
niversity of Pennsylvania Libraries , on 10 O

ct 2019 at 21:26:49 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://doi.org/10.1017/S0022109019000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


8 Journal of Financial and Quantitative Analysis

var(β̂i ) =(13)
1
T

σ 2
i

(σ 2
F + λ

2)

(
1+

λ2

Nσ 2
i σ

2
F

Ec(β2/σ 2)− 2βi Ec(β/σ 2)+β2
i Ec(1/σ 2)

varc(β/σ 2)− covc(β2/σ 2,1/σ 2)

)
.

Comment II.1. The standard errors of α̂ and λ̂ depend on the cross-sectional dis-
tributions of betas and idiosyncratic volatility (cross-sectional means, variances,
and covariances as in equations (11)–(13)).

In equations (11) and (12), the cross-sectional distribution of betas scaled by
idiosyncratic variance determines the standard errors of α̂ and λ̂. Some intuition
for these results can be gained by considering a panel Ordinary Least Squares
(OLS) regression with independent observations exhibiting heteroscedasticity. In
this case Generalized Least Squares (GLS) is optimal, which can be implemented
by dividing the regressor and regressand of each observation by the residual stan-
dard deviation. This leads to the variances of α̂ and λ̂ involving moments of 1/σ 2.
Intuitively, scaling by 1/σ 2 places more weight on the asset betas estimated more
precisely, corresponding to those stocks with lower idiosyncratic volatilities. Un-
like standard GLS, the regressors are estimated and the parameters βi and λ enter
nonlinearly in the data generating process (1). Thus, one benefit of using maxi-
mum likelihood to compute standard errors to measure efficiency losses of port-
folios is that it takes into account the errors-in-variables of the estimated betas.

Comment II.2. Cross-sectional and time-series data are useful for estimating α
and λ but primarily only time-series data is useful for estimating βi .

In equations (11) and (12), the variance of α̂ and λ̂ depend on N and T .
Under the IID error assumption, increasing the data by one time period yields
additional N cross-sectional observations to estimate α and λ. Thus, the standard
errors follow the same convergence properties as a pooled regression with IID
time-series observations, as noted by Cochrane (2005). In contrast, the variance
of β̂i in equation (13) depends primarily on the length of the data sample, T . The
stock beta is specific to an individual stock, so the variance of β̂i converges at rate
1/T and the convergence of β̂i to its population value is not dependent on the
size of the cross section. The standard error of β̂i depends on a stock’s idiosyn-
cratic variance, σ 2

i , and intuitively stocks with smaller idiosyncratic variance have
smaller standard errors for β̂i .

The cross-sectional distribution of betas and idiosyncratic variances enter
the variance of β̂i , but the effect is second order. Equation (13) has two terms.
The first term involves the idiosyncratic variance for a single stock i . The second
term involves cross-sectional moments of betas and idiosyncratic volatilities. The
second term arises because α and λ are estimated, and the sampling variation of α̂
and λ̂ contributes to the standard error of β̂i . Note that the second term is of order
1/N and when the cross section is large enough it is approximately 0.6

6The estimators are not N -consistent as emphasized by Jagannathan, Skoulakis, and Wang (2002).
That is, α̂9α and λ̂9λ as N→∞. The maximum likelihood estimators are only T -consistent in line
with a standard Weak Law of Large Numbers. With T fixed, λ̂ is estimated ex post, which Shanken
(1992) terms an ex post price of risk. As N→∞, λ̂ converges to the ex post price of risk. Only as
T→∞ does α̂→α and λ̂→λ.
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Comment II.3. The sampling error of the factor loadings affects the standard
errors of α̂ and λ̂.

Appendix A shows that the term (σ 2
F+λ

2)/σ 2
F in equations (11) and (12)

arises through the estimation of the betas. This term is emphasized by Gibbons
et al. (1989) and Shanken (1992) and takes account of the errors-in-variables of
the estimated betas.

D. Unknown Factor Mean
In this paper, we consider the case where the factor is known to have 0

mean. But more generally, we could consider the model of N×1 returns in vector
notation

(14) Rt = α1+βλ+β(F̃t −µ)+�1/2
ε
εt ,

where µ=E(F̃t ) and the factor shocks Ft≡ (F̃t−µ) are mean 0. Let λ̃=λ−µ.
Then, we can write equation (14) as

(15) Rt = α1+βλ̃+β F̃t +�
1/2
ε
εt .

This has exactly the same likelihood as equation (3) except replacing λ̃ and F̃t for

λ and Ft , respectively. Hence, the standard errors for the estimators α̂ and ˆ̃λ are
identical to equations (7) and (8), respectively, except that we replace λ with λ̃ in
the latter case. If the factors are not traded, we cannot identify the expected risk
premiums without separately estimating µ.

In models where the factor is tradable, we can test if the mean of the factor
is equal to the expected risk premium from the cross section:

(16) H ˜λ=0
0 : λ̃ = 0.

The efficient test for H λ=µ

0 involves standard errors for ˆ̃λ that are identical to the
standard errors for the estimator λ̂. The hypothesis H λ̃=0

0 does not require µ to be
separately estimated.

If a traded factor is priced (so we reject H λ=0
0 ) and in addition we reject

H λ=µ

0 , then we conclude that although the factor helps to determine expected stock
returns in the cross section, the asset pricing theory requiring λ=µ is rejected. In
this case, holding the traded factor Ft does not result in a long-run expected return
of λ. Put another way, the estimated cross-sectional risk premium, λ, on a traded
factor is not the same as the mean return, µ, on the factor portfolio.

If the factor is not traded, it is necessary to use the time-series mean of a
traded set of factors to identify µ. This is the approach of Shanken (1992). In this
approach, we work with the following log likelihood (neglecting a constant):

L = −

∑
t

(Rt −α−β(F̃t −µ+ λ))′�−1
ε

(Rt −α−β(F̃t −µ+ λ))(17)

+

∑
t

1
2σ 2

F

(F̃t −µ)2.

There are two differences between equation (17) and the factor model in equation
(6). First, λ and µ are now treated as separate parameters. Second, we identify µ
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by including Ft as another asset where α=0 and β=1, and µ is estimated by the
time-series mean of Ft .

In constructing the Hessian matrix for θ= (αλβµ), it can be shown that the
standard errors for α̂ and λ̂ are given by:

var(α̂) =
1
T
σ 2

F + λ
2

σ 2
F

β ′�−1
ε
β

(1′�−1
ε

1)(β ′�−1
ε
β)− (1′�−1

ε
β)2

,(18)

var(λ̂) =
σ 2

F

T
+

1
T
σ 2

F + λ
2

σ 2
F

1′�−1
ε

1
(1′�−1

ε
1)(β ′�−1

ε
β)− (1′�−1

ε
β)2

.

These are the maximum likelihood standard errors derived by Shanken (1992)
when including both a cross-sectional risk premium, λ, and a time-series mean of
the factors,µ. We observe that var(α̂) is identical to equation (7), but var(λ̂) differs
from equation (8) by an additive term, 1

T σ
2
F . This term shows how the variance of

λ̂ is affected by the estimation of µ, as pointed out by Jagannathan and Wang
(2002).

Finally, consider the likelihood function of the system with λ̃ augmented by
the nonzero mean F̃t in equation (17). For the parameter vector θ , the information
matrix is given by:(

E
[
−

∂2 L
∂2∂2′

])−1

=(19)

1
T


1′�−1

ε
1 1′�−1

ε
β 1′�−1

ε
(λ̃+µ) 0

β ′�−1
ε

1 β ′�−1
ε
β β ′�−1

ε
(λ̃+µ) 0

(λ̃+µ)′�−1
ε

1 (λ̃+µ)′�−1
ε
β ((λ̃+µ)2

+ σ 2
F )�−1

ε
0

0 0 0 σ 2
F


−1

.

This explicitly shows that µ̂ is uncorrelated with ˆ̃λ, and since λ̃+µ=λ, the stan-
dard errors for the system with λ and this system with λ̃ are identical.

E. Portfolios and Factor Loadings
From the properties of maximum likelihood, the estimators using all stocks

are most efficient with standard errors given by equations (11)–(13). If we use only
P portfolios as test assets, what is the efficiency loss? Let the portfolio weights be
φpi , where p=1, . . . , P and i=1, . . . , N . The returns for portfolio p are given by:

(20) Rpt = α+βpλ+βp Ft + σpεpt ,

where we denote the portfolio returns with a superscript p to distinguish them
from the underlying securities with subscripts i , i=1, . . . , N , and

βp =

∑
i

φpiβi(21)

σp =

(∑
i

φ2
piσ

2
i

)1/2

in the case of no cross-sectional correlation in the residuals.
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Ang, Liu, and Schwarz 11

The literature forming portfolios as test assets has predominantly used equal
weights with each stock assigned to a single portfolio (e.g., Fama and French
(1993), Jagannathan and Wang (1996)). Typically, each portfolio contains an
equal number of stocks. We follow this practice and form P portfolios, each con-
taining N/P stocks with φpi= P/N for stock i belonging to portfolio p and 0
otherwise. Each stock is assigned to only one portfolio, usually based on an esti-
mate of a factor loading or a stock-specific characteristic.

F. The Approach of Fama and French (1992)
An approach that uses all individual stocks but computes betas using test

portfolios is Fama and French (1992). Their approach seems to have the advantage
of more precisely estimated factor loadings that come from portfolios, with the
greater efficiency of using all stocks as observations. Fama and French run cross-
sectional regressions using all stocks, but they use portfolios to estimate factor
loadings. First, they create P portfolios and estimate betas, β̂p, for each portfolio
p. Fama and French assign the estimated beta of an individual stock to be the
fitted beta of the portfolio to which that stock is assigned. That is,

(22) β̂i = β̂p ∀ i ∈ p.

The Fama–MacBeth (1973) cross-sectional regression is then run over all stocks
i=1, . . . , N but using the portfolio betas instead of the individual stock betas. In
Appendix C we show that in the context of estimating only factor risk premia,
this procedure results in exactly the same risk premium coefficients as running
a cross-sectional regression using the portfolios p=1, . . . , P as test assets. Thus,
estimating a pure factor premium using the approach of Fama and French (1992)
on all stocks is no different from estimating a factor model using portfolios as
test assets. Consequently, our treatment of portfolios nests the Fama and French
(1992) approach.

G. Intuition Behind Efficiency Losses Using Portfolios
Since the maximum likelihood estimates achieve the Cramér–Rao lower

bound, creating subsets of this information can only do the same at best and usu-
ally worse. In this section, we present the intuition for why creating portfolios
leads to higher standard errors than using all individual stocks. To illustrate the
reasoning most directly, assume that σi=σ is the same across stocks and that
the idiosyncratic shocks are uncorrelated across stocks. In this case, the standard
errors of α̂, λ̂, and β̂i in equations (7)–(9) simplify to:

var(α̂) =
σ 2

N T
σ 2

F + λ
2

σ 2
F

Ec(β2)
varc(β)

,(23)

var(λ̂) =
σ 2

N T
σ 2

F + λ
2

σ 2
F

1
varc(β)

,(24)

var(β̂i ) =
1
T

σ 2

(σ 2
F + λ

2)

(
1+

λ2

Nσ 2σ 2
F

Ec(β2)− 2βi Ec(β)+β2
i

varc(β)

)
.

Assume that beta is normally distributed. We create portfolios by partitioning the
beta space into P sets, each containing an equal proportion of stocks. We assign
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all portfolios to have 1/P of the total mass. The cross-sectional moments for
equation (24) when using P portfolios are:

(25) Ec[βp] = µβ ,

Ec[β
2
p] =

1
P

P∑
p=1

(
µβ +

Pσβ
√

2π

(
e−

δ2p−1
2 − e−

δ2p
2

))2

= µ2
β
+ P

σ 2
β

2π

P∑
p=1

(
e−

δ2p−1
2 − e−

δ2p
2

)2

,

varc[βp] = P
σ 2
β

2π

P∑
p=1

(
e−

δ2p−1
2 − e−

δ2p
2

)2

,

as derived in Appendix D. We refer to the variance of α̂ and λ̂ computed using
P portfolios as varp(α̂) and varp(λ̂), respectively, and the variance of the portfolio
beta, βp, as var(β̂p).

The literature’s principle motivation for grouping stocks into portfolios is
that “estimates of market betas are more precise for portfolios” (Fama and French
(1993), p. 430). This is true and is due to the diversification of idiosyncratic risk
in portfolios. In our setup, equation (13) shows that the variance for β̂i is di-
rectly proportional to idiosyncratic variance, ignoring the small second term if
the cross section is large. This efficiency gain in estimating the factor loadings
is tremendous.

Figure 1 considers a sample size of T =60 with N=1000 stocks under a sin-
gle factor model where the factor shocks are Ft∼N (0, (0.15)2/12) and the factor
risk premium is λ=0.06/12. We graph various percentiles of the true beta distri-
bution with black circles. For individual stocks, the standard error of β̂i is 0.38,
assuming that betas are normally distributed with mean 1.1 and standard devia-
tion 0.7 with σ =0.5/

√
12. We graph 2-standard error bands of individual stock

betas in black through each circle. When we create portfolios, var(β̂p) shrinks by
approximately the number of stocks in each portfolio, which is N/P . Graph A of
Figure 1 shows the position of the P=25 portfolio betas, which are plotted with
small crosses linked by the red solid line. The 2-standard error bands for the port-
folio betas go through the red crosses and are much tighter than the 2-standard
error bands for the individual stocks. In the bottom plot, we show P=5 portfolios
with even tighter 2-standard error bands where the standard error of β̂p is 0.04.

However, this substantial reduction in the standard errors of the portfolio
betas does not mean that the standard errors of α̂ and λ̂ are lower using portfolios.
In fact, aggregating information into portfolios increases the standard errors of α̂
and λ̂. Grouping stocks into portfolios has two effects on var(α̂) and var(λ̂). First,
the idiosyncratic volatilities of the portfolios change. This does not lead to any
efficiency gain for estimating the risk premium. Note that the term σ 2/N using all
individual stocks in equation (24) remains the same using P portfolios since each
portfolio contains equal mass 1/P of the stocks:

(26)
σ 2

p

P
=

(σ 2 P/N )
P

=
σ 2

N
.
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Ang, Liu, and Schwarz 13

FIGURE 1

Standard Errors for β̂ Using All Stocks or Portfolios

Figure 1 assumes a single factor model where Ft ∼N (0, (0.15)2/12) and the factor risk premium λ=0.06/12. Betas are
drawn from a normal distribution with mean µβ=1.1, standard deviation σβ=0.7, and idiosyncratic volatility across stocks
constant at σi =σ=0.5/

√
12. We assume a sample of size T =60 months withN =1000 stocks. Circles denote 2 standard

error bars of β̂ for individual stocks for various percentiles of the true distribution; 0.01, 0.02, 0.05, 0.1, 0.4, 0.6,0.8, 0.9,
0.95, 0.98, and 0.99. Small crosses connected by a red line denote 2 standard error bars for the portfolio betas for P =25
portfolios (Graph A) and P =5 portfolios (Graph B). The percentiles correspond to the mid-point mass of each portfolio.
Equation (24) gives the formula for var(β̂) and Appendix D gives the computation for the portfolio moments.

Graph A. Two-Standard Error Bounds of beta with 25 Portfolios

Graph B. Two-Standard Error Bounds of Beta with 25 Portfolios
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Thus, when idiosyncratic risk is constant, forming portfolios shrinks the standard
errors of factor loadings, but this has no effect on the efficiency of the risk pre-
mium estimate. In fact, formulas (24) involve the total amount of idiosyncratic
volatility diversified by all stocks and forming portfolios does not change the total
composition. Equation (26) also shows that it is not simply a denominator effect of
using a larger number of assets for individual stocks compared to using portfolios
that makes using individual stocks more efficient.
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The second effect in forming portfolios is that the cross-sectional variance
of the portfolio betas, varc(βp), changes compared to the cross-sectional variance
of the individual stock betas, varc(β). Forming portfolios destroys some of the
information in the cross-sectional dispersion of beta, making the portfolios less
efficient. When idiosyncratic risk is constant across stocks, the only effect that
creating portfolios has on var(λ̂) is to reduce the cross-sectional variance of beta
compared to using all stocks, that is varc(βp)<varc(β). Figure 1 shows this effect.
The cross-sectional dispersion of the P=25 betas is similar to, but smaller than,
the individual beta dispersion. In Graph B, the P=5 portfolio case clearly shows
that the cross-sectional variance of betas has increased tremendously. It is this
increased cross-sectional dispersion of betas that causes var(α̂) and var(λ̂) to in-
crease when portfolios are used.

Our analysis so far forms portfolios on factor loadings. Often in practice, and
as we investigate in our empirical work, coefficients on firm-level characteristics
are estimated as well as coefficients on factor betas.7 We show in Appendix E that
the same results hold for estimating the coefficient on a firm-level characteristic
using portfolios versus individual stocks. Grouping stocks into portfolios destroys
cross-sectional information and inflates the standard error of the cross-sectional
coefficients.

What drives the identification of α and λ is the cross-sectional distribution of
betas. Intuitively, if the individual distribution of betas is extremely diverse, there
is a lot of information in the betas of individual stocks and aggregating stocks
into portfolios causes the information contained in individual stocks to be lost.
Thus, we expect the efficiency losses of creating portfolios to be largest when the
distribution of betas is very dispersed.

III. Data and Efficiency Losses
In our empirical work, we use first-pass OLS estimates of betas and estimate

risk premia coefficients in a second-pass cross-sectional regression. We work in
nonoverlapping 5-year periods, which is a tradeoff between a long enough sample
period for estimation but over which an average true (not estimated) stock beta is
unlikely to change drastically (and is a standard practice going back to Blume
(1970)). Our first 5-year period is from Jan. 1971 to Dec. 1975 and our last 5-year
period is from Jan. 2011 to Dec. 2015. We consider each stock to be a different
draw from equation (1). Our data are sampled monthly and we take all nonfinan-
cial stocks listed on NYSE, AMEX, and NASDAQ with share type codes of 10 or
11. In order to include a stock in our universe it must have data for at least 3 years
in each 5-year period, have a price that is above $0.5 and market capitalization
of at least $0.75 million. Our stock returns are in excess of the Ibbotson 1-month
T-bill rate. In our empirical work we use regular OLS estimates of betas over each

7We do not focus on the question of the most powerful specification test of the factor structure
in equation (1) (e.g. Daniel and Titman (1997), Jagannathan and Wang (1998), and Lewellen et al.
(2010)). Our focus is on testing whether the model intercept term is 0, H α=0

0 , whether the factor is
priced given the model structure, H λ=0

0 , and whether the factor cross-sectional mean is equal to its
time-series average, H λ=µ

0 .
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5-year period. Our simulations also follow this research design and specify the
sample length to be 60 months.

We estimate a 1-factor market model using the CRSP universe of individ-
ual stocks or using portfolios. Our empirical strategy mirrors the data generating
process (1) and looks at the relation between estimated betas and average returns.
We take the CRSP value-weighted excess market return to be the single factor.
We do not claim that the unconditional Capital Asset Pricing Model (CAPM) is
appropriate or truly holds, rather our purpose is to illustrate the differences on
parameter estimates and the standard errors of α̂ and λ̂ when the entire sample of
stocks is used compared to creating test portfolios.

A. Distribution of Betas and Idiosyncratic Volatility
Table 1 reports summary statistics of the betas and idiosyncratic volatilities

across firms. The full sample contains 30,833 firm observations. As expected,
betas are centered approximately at 1, but are slightly biased upwards due to
smaller firms tending to have higher betas. The cross-sectional beta distribu-
tion has a mean of 1.14 and a cross-sectional standard deviation of 0.76. The
average annualized idiosyncratic volatility is 0.50 with a cross-sectional stan-
dard deviation of 0.31. Average idiosyncratic volatility has generally increased
over the sample period from 0.43 over 1971–1975 to 0.65 over 1995–2000,
as Campbell, Lettau, Malkiel, and Xu (2001) find. However, it later declines,
consistent with Bekaert, Hodrick, and Zhang (2012). Stocks with high idiosyn-
cratic volatilities tend to be stocks with high betas, with the correlation between
beta and σ equal to 0.26.

In Figure 2, we plot empirical histograms of beta (Graph A) and lnσ
(Graph B) over all firm observations. The distribution of beta is positively skewed,
with a skewness of 0.70, and fat-tailed with an excess kurtosis of 4.44. This
implies there is valuable cross-sectional dispersion information in the tails of betas
which forming portfolios may destroy. The distribution of lnσ is fairly normal,
with almost 0 skew at 0.17 and an excess kurtosis of 0.04.

TABLE 1
Summary Statistics of Betas and Idiosyncratic Volatilities

Table 1 reports the summary statistics of estimated betas (β̂) and idiosyncratic volatility (σ̂) over each 5-year sample and
over the entire sample. We estimate betas and idiosyncratic volatility in each 5-year nonoverlapping period using time-
series regressions of monthly excess stock returns onto a constant and monthly excess market returns. The idiosyncratic
stock volatilities are annualized by multiplying by

√
12. The last column reports the number of stock observations.

Means Std. Dev. Correlations

β̂ σ̂ ln σ̂ β̂ σ̂ ln σ̂ (β̂, σ̂) (β̂, ln σ̂) No. of Obs.

1970–1975 1.24 0.43 −0.93 0.55 0.19 0.42 0.48 0.49 2,934
1975–1980 1.24 0.39 −1.04 0.58 0.20 0.47 0.38 0.45 3,218
1980–1985 1.08 0.45 −0.92 0.63 0.27 0.49 0.25 0.30 3,500
1985–1990 1.03 0.49 −0.85 0.52 0.29 0.52 0.05 0.13 3,764
1990–1995 0.94 0.52 −0.82 0.95 0.37 0.56 −0.05 0.06 4,000
1995–2000 1.01 0.65 −0.57 0.78 0.38 0.50 0.51 0.55 4,363
2000–2005 1.35 0.54 −0.75 1.04 0.30 0.53 0.52 0.55 3,493
2005–2010 1.33 0.51 −0.82 0.71 0.31 0.51 0.45 0.47 3,009
2010–2015 1.20 0.40 −1.08 0.70 0.26 0.55 0.21 0.28 2,552

Overall 1.14 0.50 −0.85 0.76 0.31 0.53 0.26 0.31 30,833
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16 Journal of Financial and Quantitative Analysis

FIGURE 2
Empirical Distributions of Betas and Idiosyncratic Volatilities

Figure 2 plots an empirical histogram over the firms in nonoverlapping 5-year samples from 1971 to 2015, computed by
OLS estimates. Graph A plots the histogram of market betas, while Graph B plots the histogram of annualized natural
log idiosyncratic volatility.
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B. Efficiency Losses Using Portfolios
We compute efficiency losses using P portfolios compared to individual

stocks using the variance ratios

(27)
varp(α̂)
var(α̂)

and
varp(λ̂)

var(λ̂)
,
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where we denote the variances of α̂ and λ̂ computed using portfolios as varp(α̂)
and varp(λ̂), respectively. We compute these variances using Monte Carlo simu-
lations, allowing for progressively richer environments. First, we form portfolios
based on true betas, which are allowed to be cross-sectionally correlated with id-
iosyncratic volatility. Second, we form portfolios based on estimated betas. Third,
we allow for cross-sectionally correlated residuals. Fourth, we allow entry and
exit of firms in the cross section. Finally, we consider two different cases in which
returns are affected by a characteristic in addition to the factor, and the portfo-
lios are sorted on this characteristic. In one case, we sort stocks into portfolios
on a characteristic that is correlated with beta, and in the other case we sort on
a characteristic that is uncorrelated with beta. We show that each of these vari-
ations further contributes to efficiency losses when using portfolios compared to
individual stocks.

1. Cross-Sectionally Correlated Betas and Idiosyncratic Volatility

Consider the following 1-factor model at the monthly frequency:

(28) Ri t = βiλ+βi Ft + εi t ,

where εi t∼N (0,σ 2
i ). We specify the factor returns Ft∼N (0, (0.15)2/12), λ=

0.06/12 and specify a joint normal distribution for (βi , lnσi ) (not annualized):

(29)
(
βi

lnσi

)
∼ N

((
1.14
−2.09

)
,
(

0.41 0.13
0.13 0.28

))
,

which implies that the cross-sectional correlation between the betas and lnσi is
0.31. These parameters come from the 1-factor betas and residual risk volatili-
ties reported in Table 1, except that the cross-sectional variance of the betas is
adjusted by subtracting off the estimated noise variance from the time series re-
gressions. From this generated data, we compute the standard errors of α̂ and λ̂ in
the estimated process (1), which are given in equations (11) and (12).

We simulate small samples of size T =60 months with N=5000 stocks. In
each simulation, we compute the variance ratios in equation (27) using portfolios
relative to using all stocks. We simulate 10,000 small samples and report the mean
and standard deviation of variance ratio statistics across the generated small sam-
ples. Table 2 reports the results. In all cases the mean and medians are very similar.

Panel A of Table 2 forms P portfolios ranking on true betas and shows that
forming as few as P=10 portfolios leads to variances of the estimators approxi-
mately 3 times larger for α̂ and λ̂. Even when 250 portfolios are used, the variance
ratios are still around 2.5 for both α̂ and λ̂. The large variance ratios are due to the
positive correlation between idiosyncratic volatility and betas in the cross section.
Creating portfolios shrinks the absolute value of the −covc(β2/σ 2,1/σ 2) term in
equations (11) and (12). This causes the standard errors of α̂ and λ̂ to significantly
increase using portfolios relative to the case of using all stocks. When the corre-
lation of beta and lnσ is set higher than our calibrated value of 0.31, there are
further efficiency losses from using portfolios.
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TABLE 2
Variance Ratio Efficiency Losses in Monte Carlo Simulations

Table 2 reports the efficiency loss variance ratios varp (θ̂)/var(θ̂) for θ=α or λ, where varp (θ̂) is computed using P portfolios
and var(θ) is computed using all stocks. We simulate 10,000 small samples of T =60 months with N =5,000 stocks using
the model in equation (28). Panel A sorts stocks by true betas in each small sample and Panels B–D sort stocks by
estimated betas. All portfolios are formed equally weighting stocks at the end of the period. Panels B–D estimate betas in
each small sample by regular OLS and the standard error variances are computed using the true cross-sectional betas
and idiosyncratic volatilities. Panels A and B assume correlated betas and idiosyncratic volatility following the process in
equation (29). Panel C introduces cross-sectionally correlated residuals across stocks following equation (31). In Panel
D, firms enter and exit stochastically and upon entry have a log-logistic model for duration given by equation (32). To
take a cross section of 5,000 firms that have more than 36 months of returns, on average, requires a steady-state firm
universe of 6,607 stocks. In Panels E and F, stocks are sorted by characteristics; these characteristics have a correlation
of 0.5 with true betas and Panel E, but are uncorrelated with true betas in Panel F. The final part of the table includes the
variances of α̂ and λ̂ using all stocks (these are by construction the same as in Panels A, B, E, and F).

α Efficiency Loss λ Efficiency Loss

No. of
Portfolios P 10 25 50 250 500 2,500 10 25 50 250 500 2,500

Panel A. Sorting on True Betas, Correlated Betas, and Idiosyncratic Volatility

Mean 2.85 2.68 2.61 2.43 2.28 1.51 2.88 2.69 2.62 2.43 2.28 1.51
Std. dev. 0.14 0.13 0.13 0.11 0.10 0.05 0.12 0.11 0.11 0.10 0.08 0.04

Panel B. Sorting on Estimated Betas, Correlated Betas, and Idiosyncratic Volatility

Mean 6.16 6.00 5.84 5.08 4.40 1.94 5.54 5.39 5.25 4.62 4.05 1.89
Std. dev. 0.60 0.56 0.53 0.44 0.37 0.10 0.51 0.48 0.45 0.38 0.32 0.09

Panel C. Correlated Betas, Idiosyncratic Volatility, and Cross-Correlated Residuals

Mean 22.4 18.3 15.0 7.7 5.5 2.0 25.8 20.3 15.9 7.6 5.4 2.0
Std. dev. 15.8 12.2 9.3 3.1 1.5 0.2 21.2 15.1 10.2 2.5 1.1 0.9

Panel D. Correlated Betas, Idiosyncratic Volatility, Cross-Correlated Residuals

Entry and Exit of Firms
Mean 27.5 22.6 18.4 9.5 6.8 2.4 31.7 25.0 19.6 9.3 6.6 2.4
Std. dev. 19.3 14.9 11.4 3.8 1.9 0.2 26.1 18.6 12.7 3.1 1.4 0.1

Panel E. Sorting on Characteristics Correlated with Betas

Mean 13.2 12.5 12.1 10.0 8.2 2.6 12.4 11.7 11.4 9.4 7.7 2.5
Std. dev. 1.0 0.9 0.9 0.7 0.5 0.1 0.8 0.8 0.8 0.6 0.5 0.1

Panel F. Sorting on Characteristics Uncorrelated with Betas

Mean 2380.8 756.0 350.7 61.9 28.2 3.3 2169.0 689.2 319.9 56.7 26.1 3.2
Std. dev. 1621.2 243.5 77.5 6.5 2.3 0.2 1427.8 221.3 70.2 5.8 2.1 0.2

Memo: var(α̂) (All Stocks) var(λ̂) (All Stocks)
Panel A: 0.123 0.104
Panel B: 0.123 0.104
Panel C: 0.124 0.113
Panel D: 0.124 0.113
Panel E: 0.123 0.104
Panel F: 0.123 0.104

Forming portfolios based on true betas yields the lowest efficiency losses,
with the next 3 panels in Table 2 forming portfolios based on estimated betas.
In Panel B, we form portfolios on estimated betas with the same data-generating
process as Panel A. However, to ensure that the portfolios are actual tradable
portfolios, we generate a pre-sample of 60 months of data for each stock that
we use solely to estimate ex ante betas for sorting into portfolios. By forming
portfolios on estimated betas, the efficiency losses increase. For P=25, portfolios
the mean variance ratio varp(λ̂)/var(λ̂) is 5.4 in Panel B compared to 2.7 in Panel
A when portfolios are formed on the true betas. For P=500, portfolios formed
on estimated betas, the mean variance ratio for λ̂ is still 4.1. Thus, the efficiency
losses increase considerably once portfolios are formed on estimated betas.
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2. Cross-Sectionally Correlated Residuals

We now extend the simulations to account for cross-sectional correlation in
the residuals. We extend the data generating process in equations (28)–(29) by
assuming

(30) εi t = ξi u t + σvivi t ,

where u t∼N (0,σ 2
u ) is a common, 0-mean, residual factor that is not priced and vi t

is a stock-specific shock. This formulation introduces cross-sectional correlation
across stocks by specifying each stock i to have a loading, ξi , on the common
residual shock, u t .

To simulate the model we draw (βi ξi lnσvi ) from

(31)

 βi

ξi

lnσvi

 ∼ N

 1.14
1.01
−2.09

 ,

0.41 0.22 0.13
0.22 1.50 0.36
0.13 0.36 0.28

 ,

and set σu=0.09/
√

12. In this formulation, stocks with higher betas tend to have
residuals that are more correlated with the common shock (the correlation be-
tween β and ξ is 0.24) and higher idiosyncratic volatility (the correlation of β
with lnσvi is 0.33). As in Panel B, a pre-sample of 60 months data was used for
estimating the betas for the purpose of sorting stocks into tradable portfolios.

We report the efficiency loss ratios of α̂ and λ̂ in Panel C of Table 2. The loss
ratios are much larger, on average, than Panels A and B, at 18 for varp(α̂)/var(α̂)
and 20 for varp(λ̂)/var(λ̂) for P=25 portfolios. Thus, cross-sectional correlation
worsens the efficiency losses from using portfolios. A greater estimation error of
the betas leads to a less precise portfolio assignment of the individual assets. To
the extent that the residuals are correlated with one another, the within-portfolio
benefit of offsetting errors is reduced. Intuitively, one can think about the extreme
case of perfectly correlated residuals; there will be no reduction in noise from
grouping assets and yet there will be a compressed distribution of observations
from which to draw inference. With correlated residuals, the efficiency gains in
estimating beta loadings are more quickly offset by the loss of information about
the true distribution of betas.

3. Entry and Exit of Individual Firms

We also compute efficiency losses using stocks or portfolios with entry and
exit of individual firms, giving a stochastic number of firms in the cross-section.
We consider a log-logistic survivor function for a firm surviving to month T at
time t after listing given by

(32) Pr (T > t) = [1+ (0.0323t)1.2658
]
−1,

which is estimated on all CRSP stocks taking into account right-censoring. The
implied median firm duration is 31 months. We simulate firms over time and at the
end of each T =60 month period, we select stocks with at least T =36 months of
history. In order to have a cross section of 5,000 stocks, on average, with at least

https://doi.org/10.1017/S0022109019000255
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . U
niversity of Pennsylvania Libraries , on 10 O

ct 2019 at 21:26:49 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://doi.org/10.1017/S0022109019000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


20 Journal of Financial and Quantitative Analysis

36 observations, the average total number of firms is 6,607. We start with 6,607
firms and as firms delist, they are replaced by new firms. Firm returns follow the
data-generating process in equation (28) and as a firm is born, its beta, common
residual loading, and idiosyncratic volatility are drawn from equation (31). In this
simulation, the firms are sorted into portfolios based on their estimated betas over
the sample, rather than an additional pre-sample, because of the structure of entry
and exit. This means that in Panel D, the portfolios are ex post portfolios, unlike
the tradable ex ante portfolios in Panels B and C.

Panel D of Table 2 reports the results. The efficiency losses are slightly
larger than Panel C with a fixed cross section. For example, with 25 portfolios,
varp(λ̂)/var(λ̂)=25 compared to 20 for Panel C. Thus, with firm entry and exit,
forming portfolios results in greater efficiency losses. Although the number of
stocks is, on average, the same as in Panel C, the cross section now contains
stocks with fewer than 60 observations (but at least 36). This increases the esti-
mation error of the betas, which accentuates the same effect as Panel B. There is
now larger error in assigning stocks with very high betas to portfolios, and creat-
ing the portfolios masks the true cross-sectional dispersion of the betas. In using
individual stocks, the information in the beta cross section is preserved and there
is no efficiency loss.

4. Sorting on a Characteristic

Consider the model in equation (28) and let ci be a characteristic of each
stock such that ci∼N (0,σ 2

c ), where ci and βi have correlation ρcβ . We assume
that the econometrician can observe ci and think of this as representing a char-
acteristic of the individual stock, such as size. We then form portfolios sorting
on the characteristic ci . As the characteristic is observable and constant over time
for each stock, these are clearly tradable portfolios. So as not to overstate the
cross-sectional variation of the estimated betas, we subtract the variance of the
time-series betas estimation from the cross-sectional beta variance.

Panel E of Table 2 reports the results when ρcβ=0.5, indicating moderate
correlation between the characteristic and beta. Panel F of Table 2 forms P port-
folios ranking on ci when ρcβ=0. In both cases, there is a large efficiency loss
from forming portfolios that can be avoided by using individual stocks. When
ρcβ=0, the efficiency losses from forming portfolios are enormous. This is be-
cause there is a relationship between betas and returns for individual stocks, but
the portfolios are sorted on the characteristic, and the characteristic is uncorre-
lated with betas. This destroys almost all the variation in betas across portfolios
and renders the parameters virtually unidentified.

C. Bias-Efficiency Tradeoff
Studies may decide on using stocks versus portfolios based on efficiency,

which is the focus in this paper. However, the potential for bias in the point esti-
mate of factor risk premia should also be considered. For the progressively richer
environments considered in the simulations in the previous subsection, we also
compute bias and report the results in Table 3.

Grouping stocks into portfolios comes at the expense of having fewer test
assets in the cross section to estimate risk premia, and thus less efficient estimates.
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TABLE 3
Biases in Monte Carlo Simulations

Table 3 reports the simulated biases of the maximum likelihood estimators of α and λ using P portfolios and all stocks.
We simulate 10,000 small samples of T =60 months with N =5,000 stocks using the model in equation (28). The different
sorting methods are defined in Table 2. The biases are expressed as annualized percentage rates.

No. of Portfolios P 10 25 50 250 500 2,500 All Stocks

Panel A. Sorting on True Betas, Correlated Betas, and Idiosyncratic Volatility

α 0.01 0.02 0.03 0.13 0.24 0.70 0.89
λ 0.03 0.01 0.00 −0.11 −0.23 −0.76 −0.97

Panel B. Sorting on Estimated Betas, Correlated Betas, and Idiosyncratic Volatility

α 0.03 0.05 0.08 0.29 0.47 0.90 0.89
λ 0.01 −0.01 −0.04 −0.24 −0.42 −0.92 −0.97

Panel C. Correlated Betas, Idiosyncratic Volatility, and Cross-Correlated Residuals

α 0.04 0.06 0.09 0.31 0.51 0.95 0.95
λ −0.07 −0.09 −0.13 −0.34 −0.57 −1.06 −1.14

Panel D. Correlated Betas, Idiosyncratic Volatility, Cross-Correlated Residuals, and Entry and Exit of Firms

α −0.036 −0.01 0.04 0.34 0.59 1.17 1.20
λ −0.06 −0.08 −0.13 −0.42 −0.67 −1.33 −1.43

Panel E. Sorting on Characteristics Correlated with Betas

α 0.02 0.06 0.14 0.54 0.84 1.19 0.89
λ 0.02 −0.02 −0.09 −0.47 −0.76 −1.18 −0.97

Panel F. Sorting on Characteristics Uncorrelated with Betas

α 2.51 2.71 2.61 2.45 2.28 1.49 0.89
λ −2.16 −2.35 −2.26 −2.13 −2.01 −1.46 −0.97

However, when stocks are not aggregated into portfolios, the beta estimates are
more susceptible to measurement error, which could bias the risk premium point
estimate. The problems of bias can be large. Several researchers have examined
the nature of bias effects and proposed methods to mitigate them (Litzenberger
and Ramaswamy (1979), Gibbons (1982), Shanken (1992), Kim (1995), Shanken
and Zhou (2007), Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2017)). Kim
constructs a bias correction with a maximum likelihood interpretation, and shows
that once the measurement error in the beta estimates is accounted for, factor risk
premium estimation is N -consistent. Our analytical framework shows that using
all test assets available in the cross section gives the most efficient estimates of
risk premia. Thus, estimation methods that account for bias present the clearest
case for using individual stocks rather than grouping stocks into a smaller number
of test assets.

In practice, however, many researchers use risk premium estimation methods
where the choice of test asset has a large influence on bias in the point estimate.
To provide some guidance on the potential bias-efficiency tradeoff in the presence
of EIV effects, we consider the standard 2-step Fama–MacBeth estimation. In
the first stage of the Fama–MacBeth procedure, betas can be estimated for each
stock separately. The second-stage regressors are then formed from the first-stage
beta estimates. It is the measurement accuracy of the beta estimate and the cross-
sectional dispersion in the true factor loading that matter for bias due to classical
measurement error.
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1. Bias in the Point Estimate

The potential reduction in measurement error of the beta estimates has
motivated the practice of grouping stocks into portfolios as test assets. The more
stocks that are grouped to form a portfolio, the more idiosyncratic risk can be
diversified away in the first stage beta estimates. Consistent with this, the bias in
estimates of α and λ across the various empirical settings in Table 3 generally
becomes less severe as the number of portfolios declines (as the number of stocks
in each portfolio becomes larger).

The attenuation bias in classical measurement error scales the true slope co-
efficient by a factor:

(33)
σ 2
∗

σ 2
∗
+ σ 2

v

,

where σ 2
∗

denotes the variance of the true regressor and σ 2
v

denotes the variance of
the measurement error. This bias worsens as the variance of the measurement error
in the first-stage betas increases and also as the variance of the true second-stage
regressor shrinks, which are two potential countervailing effects to the diversifi-
cation benefit of forming portfolios.

In comparing Panels A and B of Table 3, the only difference is the variable
on which stocks are sorted into portfolios. By sorting stocks on estimated rather
than true betas, there is a less diverse set of portfolios, giving less variation across
true factor loadings. Panel B shows that bias is still less severe when estimating
risk premia with portfolios as compared to individual stocks, but less so than in
Panel A.

Panel C shows bias in the case of cross-correlated residuals, which directly
dampens the benefit of offsetting errors with portfolio formation. Panel D allows
for the entry and exit of firms, which results in less well-measured first stage beta
estimates, giving higher variance in the measurement error and inducing more er-
ror in sorting stocks into portfolios. Similar to the case in Panel B when sorting
stocks on estimated betas, variance in true factor loadings declines as portfolios
become less dissimilar. The bias reduction benefit to forming portfolios still out-
weighs the cost in Panels C and D, but to a lesser extent than in the baseline
empirical setting shown in Panels A and B.

If stocks are sorted into portfolios in a way that sufficiently shrinks variation
across true portfolio factor loadings, it can fully offset the diversification benefit
from forming portfolios. An extreme example is to sort stocks into portfolios at
random. The true portfolio factor loadings will not be meaningfully differentiable,
greatly worsening attenuation bias. Panel E shows the case of stocks sorted into
portfolios based on a characteristic that is correlated with the factor loading. The
bias in the α and λ estimates is least pronounced, with the smallest number of
portfolios (portfolios that contain the greatest number of stocks). However, form-
ing a large number of portfolios (with few stocks in each) shows more bias than
using stocks individually. The case shown in Panel F sorts on a characteristic
that is uncorrelated with betas, generating no diversification benefit from forming
portfolios. The bias in the α and λ estimates is worse when using any number of
portfolios as compared to using individual stocks.
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2. Comparing Bias and Efficiency Effects

One way to measure the relative importance of efficiency as compared to
bias on risk premia estimates is to consider the mean squared error (MSE), which
is the bias squared plus the variance. Table 4 reports the MSE for each simulation
and number of portfolios. We see that the minimum MSE is achieved in some of
our empirical environments by using a large number of portfolios (250 to 500)
and in other environments by using individual stocks as test assets.

The effect of bias is very small when just a few portfolios are formed (when
each portfolio has many stocks), contributing little to the MSE. Yet, the efficiency
loss from using very few portfolios as test assets and thus reducing cross-sectional
variation for the second-stage estimation means that forming fewer than around
250 portfolios, each containing roughly 20 stocks, is not optimal in a MSE sense
in any of our empirical settings. We emphasize that we do not aim to propose an
optimal portfolio size or an optimal number of portfolios. Rather, we encourage
the researcher to consider the effect of realistic data features on the bias-efficiency
tradeoff when faced with choices in the estimation and interpretation of results.

Sorting stocks into portfolios based on true betas, as in Panel A of
Tables 2–4, preserves the most cross-sectional variation possible in portfolio es-
timates. In this case, the efficiency loss generated by the positive cross-sectional
correlation between idiosyncratic volatility and the betas is gradual as the number
of portfolios declines. The results for portfolios sorted on estimated betas show a
steeper decline in efficiency in the transition from using individual stocks to form-
ing portfolios containing very few stocks, but the outcome is similar to Panel A.

TABLE 4
MSE in Monte Carlo Simulations

Table 4 reports the simulated mean square error of the maximum likelihood estimators of α and λ using P portfolios and
all stocks. We simulate 10,000 small samples of T = 60 months with N =5,000 stocks using the model in equation (28).
The different sorting methods are defined in Table 2.

No. of Portfolios P 10 25 50 250 500 2,500 All Stocks

Panel A. Sorting on True Betas, Correlated Betas, and Idiosyncratic Volatility

α 0.35 0.33 0.32 0.32 0.34 0.67 0.91
λ 0.30 0.28 0.27 0.27 0.29 0.73 1.05

Panel B. Sorting on Estimated Betas, Correlated Betas, and Idiosyncratic Volatility

α 0.76 0.74 0.72 0.71 0.76 1.05 0.91
λ 0.58 0.56 0.55 0.54 0.60 1.04 1.05

Panel C. Correlated Betas, Idiosyncratic Volatility, and Cross-Correlated Residuals

α 2.78 2.28 1.87 1.05 0.94 1.15 1.03
λ 2.91 2.30 1.81 0.97 0.90 1.36 1.41

Panel D. Correlated Betas, Idiosyncratic Volatility, Cross-Correlated Residuals, and Entry and Exit of Firms

α 3.41 2.80 2.29 1.29 1.19 1.67 1.56
λ 3.58 2.83 2.23 1.22 1.19 2.04 2.16

Panel E. Sorting on Characteristics Correlated with Betas

α 1.62 1.54 1.50 1.52 1.71 1.73 0.91
λ 1.29 1.22 1.19 1.20 1.38 1.65 1.05

Panel F. Sorting on Characteristics Uncorrelated with Betas

α 298.90 100.30 49.90 13.60 8.68 2.62 0.91
λ 229.80 77.00 38.30 10.40 6.75 2.40 1.05
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Estimation in the presence of cross-correlated residuals (Panel C) or firm entry
and exit over time (Panel D) further reduces the cross-sectional variation in port-
folio betas. The severity of the cross-sectional information loss increases sharply
as fewer portfolios are formed (the number of stocks grouped into each portfolio
grows). There is relatively little efficiency loss when using a very large number of
portfolios. Meanwhile, bias with a large number of portfolios is close to the size
of bias with individual stocks. The combined effect achieves the lowest MSE with
a very large number of portfolios (500) in Panels C and D.

Panels E and F show results for portfolios that are sorted on characteristics
rather than the first-stage beta estimates. In Panel E, portfolios are formed on a
characteristic that is correlated with the first-stage estimates, and so the net effect
on the MSE is similar to a case of sorting on very noisy beta estimates. Panel F
shows the more extreme case where the characteristic is entirely uncorrelated with
the beta. The complete lack of bias reduction from forming portfolios means that
MSE is minimized by using individual stocks as test assets.

3. Summary

The accuracy with which the individual assets are assigned to portfolios mat-
ters to the bias-variance tradeoff. Mis-grouping individual stock beta estimates
can shrink the cross-sectional dispersion in test assets when using portfolios, with-
out an offsetting reduction in measurement error of the estimates. The particular
choice of variable on which portfolios are sorted can adversely affect risk pre-
mia variance and bias. Since using individual stocks does not require sorting, this
source of negative influence on bias and variance of risk premia estimates only
affects estimation with portfolios.

In each empirical setting we consider (Panels A–F of Table 2) that efficiency
gains in risk premium estimates increase as the number of portfolios approaches
the number of individual stocks. Diversification across estimation errors in the
cross section can lessen measurement error in beta estimates and thus reduce bias.
This effect is larger when portfolios contain a greater number of stocks. However,
grouping does not necessarily mean less bias. The importance of various data fea-
tures (e.g., cross-sectional correlation among errors) can lessen the diversification
benefit from grouping stocks into portfolios. Poorly constructed portfolios lessen
variation across true portfolio factor loadings, and this could potentially worsen
bias in the risk premium point estimate relative to the case of using individual
stocks. Variance and bias of estimates may be adversely affected by the particular
choice of stock grouping for portfolios.

IV. Empirical Analysis
We now investigate the differences in using portfolios versus individual

stocks in the data with actual historical stock returns. First, we use the past 3–5
years of monthly returns to estimate ex ante betas for each stock in each year,
(e.g., the 1970 ex ante beta is formed with returns from Jan. 1966 to Dec. 1970).
We rank the stocks into portfolios based on these ex ante betas in December of
each year. Using these portfolio groupings, we calculate the rolling 12-month
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portfolio return (e.g., portfolio returns from Jan. 1971 to Dec. 1971 are calculated
for portfolios formed in Dec. 1970).

We use the rolling portfolio returns to estimate the contemporaneous portfo-
lio betas, in 5-year nonoverlapping windows. The first 5-year beta is formed with
returns from 1971 to 1975. We then relate these contemporaneously estimated
portfolio betas to same-sample returns (1971 to 1975 in the first 5-year period) in
order to form portfolio factor risk premia estimates. Using betas estimated from
1971 to 2015, we compare the portfolio factor risk premia to those estimated with
individual stocks as test assets. In a balanced panel, the portfolio betas would
be equal to the weighted-average of the individual stock beta estimates, but the
sample period returns are not a balanced panel.

In estimating factor risk premia, we find that the efficiency losses predicted
by our analytical framework are borne out in the data. When stocks are grouped
into portfolios, the estimated betas show less variance, which translates into higher
variance of the risk premia estimates. The more cross-sectional dispersion that
stocks lose when grouped into portfolios, the more extreme the effect.

We compare estimates of a 1-factor market model on the CRSP universe in
Section IV.A and the Fama–French (1993) 3-factor model in Section IV.B, for all
stocks and for portfolios. We compute standard errors for the factor risk premia
estimates using maximum likelihood, which assumes normally distributed resid-
uals, and also using GMM, which is distribution free. The standard errors account
for cross-correlated residuals, which are modeled by a common factor and also
using industry factors. These models are described in Appendix F. In order to
present a concise discussion in this section, we refer to the results for the common
factor residual model alone. The results using the industry classification are simi-
lar, and we present both models in the tables for completeness and as an additional
robustness check. The coefficient estimates are all annualized by multiplying the
monthly estimates by 12.

A. One-Factor Model

1. Using All Stocks

The factor model in equation (1) implies a relation between firm excess re-
turns and estimated firm betas. Thus, we stack all stocks’ excess returns from each
5-year period into one panel and run a regression using average firm excess returns
over each 5-year period as the regressand, with a constant and the estimated be-
tas for each stock as the regressors. Panel A of Table 5 reports the estimates and
standard errors of α and λ in equation (1), using all 30,833 firm observations.

Using all stocks produces risk premia estimates of α̂=8.54% and λ̂=4.79%.
The GMM standard errors are 1.40 and 1.05, respectively, with t-statistics of
6.1 and 4.6, respectively. The maximum likelihood t-statistics, which assume
normally distributed residuals, are larger, at 53.9 and 29.8, respectively. With ei-
ther specification, the CAPM is firmly rejected since H α=0

0 is overwhelmingly re-
jected. We also clearly reject H λ=0

0 , and so we find that the market factor is priced.
The market excess return is µ=6.43%, which is close to the cross-sectional
estimate λ̂=4.79%, over our 1971–2015 sample period. We formally test
H λ=µ

0 below.
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TABLE 5
Estimates of a 1-Factor Model

In Table 5, the point estimates of α and λ for the single factor, MKT, in equation (1) are reported over all stocks (Panel A)
and various portfolio sortings (Panel B). The betas are estimated by running a first-pass OLS regression of monthly excess
stock returns ontomonthly excessmarket returns over nonoverlapping 5-year samples beginning in Jan. 1971 and ending
in Dec. 2015. All stock returns in each 5-year period are stacked and treated as one panel. We use a second-pass cross-
sectional regression to compute α̂ and λ̂. Using these point estimates we compute the various standard errors (SE) and
absolute values of t -statistics (|t -stat|). We compute the maximum likelihood standard errors (equations (11) and (12)) in
the columns labeled ‘‘Max Lik’’ and GMM standard errors, detailed in Appendix B, in the columns labeled ‘‘GMM.’’ We
allow for cross-correlated residuals computed using a 1-factor model or industry classifications, which are described in
Appendix F. The last 4 columns labeled ‘‘β̂ Cross Section’’ list various statistics of the cross-sectional beta distribution:
the cross-sectional mean, Ec (β̂), the cross-sectional standard deviation, σc (β̂), and the beta values corresponding to the
5th and 95th percentiles of the cross-sectional distribution of beta. In Panel B we form ex ante portfolios by grouping
stocks into portfolios at the beginning of each calendar year, ranking on the estimated market beta over the previous
5 years. Equally-weighted portfolios are created and the portfolios are held for 12 months to produce monthly portfolio
returns. The portfolios are rebalanced annually at the beginning of each calendar year. The first estimation period is Jan.
1966 to Dec. 1970 to produce monthly returns for the calendar year 1971. The last estimation period is Jan. 2010 to
Dec. 2014 to produce monthly returns for 2015. After the ex ante portfolios are created, we follow the same procedure as
Panel A to compute realized OLS market betas in each nonoverlapping 5-year period and then estimate a second-pass
cross-sectional regression. In Panel B, the second-pass cross-sectional regression is run only on the P portfolio test
assets. All estimates α̂ and λ̂ are annualized by multiplying the monthly estimates by 12.

Residual Factor Model Industry Residual Model

Max Lik GMM Max Lik GMM β̂ Cross Section

No. of Portfolios P Estimate (%) SE |t -Stat.| SE |t -Stat.| SE |t -Stat.| SE |t -Stat.| Ec (β̂) σc (β̂) 5% 95%

Panel A. All Stocks

α̂ 8.54 0.16 53.86 1.40 6.12 0.34 24.85 0.73 11.71 1.14 0.76 0.12 2.44
λ̂MKT 4.79 0.16 29.76 1.05 4.56 0.18 27.22 0.55 8.73

Panel B. Portfolios

5 α̂ 14.72 1.09 13.50 2.81 5.23 2.33 6.31 3.04 4.85 1.12 0.35 0.62 1.64
λ̂MKT 1.14 1.50 0.76 2.81 0.41 2.19 0.52 2.88 0.40

10 α̂ 14.24 0.91 15.61 2.63 5.42 1.82 7.82 2.38 5.99 1.12 0.36 0.60 1.67
λ̂MKT 1.58 1.30 1.22 2.65 0.60 1.68 0.94 2.23 0.71

25 α̂ 14.13 0.73 19.42 2.45 5.76 1.40 10.07 1.80 7.87 1.12 0.36 0.58 1.70
λ̂MKT 1.69 1.05 1.61 2.50 0.68 1.27 1.33 1.65 1.02

50 α̂ 14.08 0.62 22.63 2.37 5.94 1.20 11.77 1.52 9.24 1.12 0.36 0.59 1.70
λ̂MKT 1.73 0.85 2.03 2.42 0.72 1.06 1.64 1.38 1.26

Using individual stocks as test assets to estimate the relationship between
returns and estimated betas gives t-statistics that are comparable in magnitude to
other studies with the same the experimental design (e.g. Ang, Chen, and Xing
(2006)). The set-up of many factor model studies in the literature differ in that
portfolios are often used as test assets instead of stocks. In this section, we inves-
tigate empirically the potential impact of this specification difference on the size
of the α̂ and λ̂ t-statistics.

2. Using Portfolios

Our theoretical results in Section II show that there could be a large loss of
efficiency in the estimation of factor risk premia using portfolios as test assets
instead of individual stocks. Thus, our empirical focus is on the increase in
standard errors, or the decrease in absolute values of the t-statistics, resulting
from the choice of test asset (stocks versus portfolios, and the portfolio size). The
various types of standard errors (maximum likelihood versus GMM) also differ,
but our focus is on the relative differences for the various test assets within each
type of standard error. We now investigate these effects.
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To form portfolios, we group stocks into portfolios at the beginning of each
calendar year, ranking on the market beta estimated over the previous 5 years.
Once the portfolios are formed based on the pre-formation betas, they are held
for 12 months to produce portfolio returns. We rebalance the portfolios annually,
weighting stocks equally within each portfolio. Then, we compute the first-pass
OLS market betas of each portfolio, in each nonoverlapping 5-year period. These
portfolio betas are the factor loadings for the portfolios. Finally, to estimate the
portfolio α and λ in Panel B of Table 5 we run a second-pass cross-sectional
regression of excess returns onto the betas. Thus, we examine the same beta–
realized return relation in the case of all stocks and portfolios, in Panels A and B,
respectively, over the same sample.

In the last 4 columns of Table 5, we report statistics of the cross-sectional
dispersion of the betas for each of the various test assets. Specifically, we show the
mean asset beta value, Ec (β̂), the cross-sectional standard deviation, σc(β̂), and
the beta values corresponding to the 5th and 95th percentiles of the distribution.
These statistics allow us to compare the cross-sectional information available to
estimate risk premia for different test assets. With P=5 portfolios, the cross-
sectional standard deviation of beta is only σc(β̂p)=0.35, compared to σc(β̂)=
0.76 using all stocks. The severe shrinkage in the beta distribution means that the
portfolios miss substantial information in the tails; the 5th and 95th percentiles
for P=5 portfolios are 0.62 and 1.64, respectively, compared to 0.12 and 2.44 for
all stocks.

The cross-section of the estimated betas relate to returns in the second-stage
estimation of risk premia in tests of factor models. The truncated distribution of
the portfolio betas produces much larger standard errors in the cross-sectional
estimation of λ than using the full stock universe. For all portfolio sizes, the port-
folio standard errors exceed those of the individual stock standard errors, for both
GMM and MLE. The portfolios fail to reject H λ=0

0 , except for MLE standard errors
for P=50, which is significant at the 10% level, in contrast to the overwhelming
rejection when using all stocks. This underscores the importance of the informa-
tion in the beta distribution, which is entirely preserved using all stocks.

Panel B also shows that the estimates of α and λ from portfolios are quite
dissimilar to the estimates in Panel A. Using portfolios as test assets produces
estimates of α and λ close to 14% and 1–2%, respectively. In contrast, all stocks
(Panel A) produce alpha estimates around 8% and estimates of λ around 4–5%.
This marked difference in λ̂ is not driven by individual stocks having greater atten-
uation bias due to classical measurement error in the beta estimates because that
would go the other way. Rather, it indicates that portfolios may provide noisier
point estimates over this sample.

Figure 3 plots the evolution of λ̂ as the number of portfolios grows larger (and
the number of stocks in each portfolio decreases) with 2-standard error bounds
around the point estimate. There is a huge variance in the distribution from which
portfolio estimates are drawn, especially when only a small number of portfolios
are formed. The portfolio λ point estimate is within error bounds of the λ point
estimate for individual stocks only when P>500 portfolios. However, the λ point
estimate from individual stocks is within the error bounds of the portfolio λ point
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FIGURE 3
One-Factor Risk Premium Estimates with Portfolios

Figure 3 plots λ̂ in a 1-factor model using P portfolios in blue circles. The 2-standard error bands are marked as black
lines intersecting the point estimates. The portfolios are formed by grouping stocks into portfolios at the beginning of each
calendar year ranking on the estimated market beta over the previous 5 years. Equally-weighted portfolios are created
and the portfolios are held for 12 months to produce monthly portfolio returns. The estimate obtained using all individual
stocks is labeled ‘‘All’’ on the x -axis and is graphed using a red square. The first-pass beta estimates are obtained using
nonoverlapping 5-year samples from 1971 to 2015 with OLS.
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estimate for all portfolio sizes. The value of λ is estimated with much greater
certainty when individual stocks are used as test assets.

With the smallest number of portfolios, λ̂ is most divergent from λ̂ with in-
dividual stocks, but the divergence drops as the number of portfolios is increased.
In addition to truncating the tails of the beta distribution, grouping many stocks
into a small number of portfolios has large implications for the higher moments
of the distribution. Skewness for the beta distribution when using P=10 is 0.85,
greater than 0.70 for individual stocks. Excess kurtosis for P=10 is 2.27, about
half of that for individual stocks. Stocks have a finite life. When the history of
a firm’s return is short, there is larger error in assigning the stock to a portfolio,
which potentially exacerbates the beta distribution’s shrinkage. We require stocks
to have at least 3 years of returns to be included in the analysis, but the firm/year
panel is still far from balanced.

3. Tests of Cross-Sectional and Time-Series Estimates

We end our analysis of the 1-factor model by testing H λ=µ

0 , which tests
the equality of the cross-sectional risk premium and the time-series mean of the
market factor portfolio. Table 6 presents the results. Using all stocks, λ̂=4.79%
is fairly close to the time-series estimate, µ̂=6.43%, but the small standard er-
rors of maximum likelihood cause H λ=µ

0 to be rejected with a t-statistic of 10.16.
With GMM standard errors, we fail to reject H λ=µ

0 with a t-statistic of 1.56.
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TABLE 6
Tests for Hλ=µ

0 (|t-Statistics|) for the 1-Factor Model

Table 6 reports absolute values of t -statistics for testing if the cross-sectional risk premium, λ, is equal to the time-series
mean of the factor portfolio, µ, which is the hypothesis test H λ=µ

0 for the 1-factor model. The maximum likelihood test and
the GMM test, in the columns labeled ‘‘Max Lik’’ and ‘‘GMM’’, respectively, are detailed in Section II and in Appendix B. We
allow for cross-correlated residuals computed using a 1-factor model or industry classifications, which are described in
Appendix F. The column labeled ‘‘λ̂’’ reports the annualized estimate of the cross-sectional market risk premium, obtained
by multiplying the monthly estimate by 12. The data sample is Jan. 1971–Dec. 2015.

Residual Factor Industry Residuals

No. of Portfolios P λ̂ (%) Max Lik GMM Max Lik GMM

µ̂MKT=6.43%

All Stocks 4.79 10.16 1.56 9.32 2.98

Portfolios
5 1.14 3.23 1.72 2.22 1.68
10 1.58 3.73 1.83 2.88 2.17
25 1.69 4.52 1.90 3.74 2.87
50 1.73 5.50 1.94 4.44 3.41

In contrast, the portfolio estimates all reject H λ=µ

0 , at least at the 10% level, with
either maximum likelihood or GMM standard errors.

4. Summary

We overwhelmingly reject H α=0
0 and hence the 1-factor model using all

stocks or portfolios. For all stocks, we also reject H λ=0
0 , thus finding the mar-

ket factor priced. Using all stocks we estimate λ̂=4.79%. But using portfolios
can produce quite different point estimates of cross-sectional risk premia. The λ̂
produced by 5–50 portfolios range from only 1.14% to 1.73%. Further, the loss
of information in the cross section of portfolio factor loadings leads us to fail to
reject H λ=0

0 , for all except the largest number of portfolios, P=50 with maximum
likelihood standard errors. For the test of H λ=µ

0 , portfolios reject the hypothesis at
the 10 percent level, while results are mixed using individual stocks.

B. Fama–French (1993) Model
This section estimates the Fama and French (1993) model:

(34) Ri t = α+βM K T ,iλMKT+βSM B,iλSMB+βH M L ,iλHML+ σiεi t ,

where MKT is the excess market return, SMB is a size factor, and HML is a
value/growth factor. We follow the same estimation procedure as in Section IV.A
in that we stack all observations into one panel of nonoverlapping 5-year periods
to estimate the cross-sectional coefficients α, λMKT, λSMB, and λHML.

1. Factor Loadings

We now compare the Fama–French model factor loadings of all stocks to
those of the portfolios. We form the portfolios using the same procedures de-
scribed in Section IV.A.2. We sort stocks into n×n×n portfolios sequentially,
ranking first on β̂MKT, then on β̂SMB, and lastly on β̂HML, which gives us the same
number of stocks in each portfolio.

Table 7 reports summary statistics for the distribution of the betas β̂MKT, β̂SMB,
and β̂HML for all specifications of test assets. The mean of each factor loading type
is almost the same for all stocks and for portfolios. The market betas are centered
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TABLE 7
Cross-Sectional Distribution of Fama–French (1993) Factor Loadings

Table 7 reports cross-sectional summary statistics of estimated Fama–French (1993) factor loadings, β̂MKT, β̂SMB, and β̂HML.
We report cross-sectional means (Ec (β̂)), standard deviations (σc (β̂)), and the estimated factor loadings corresponding to
the 5th and 95th percentiles of the cross-sectional distribution. The factor loadings are estimated by running a multivariate
OLS regression of monthly excess stock returns onto the monthly Fama–French (1993) factors (MKT, SMB, and HML)
over nonoverlapping 5-year samples beginning in Jan. 1971 and ending in Dec. 2015. All of the factor loadings in each
5-year period are stacked and treated as one panel. The portfolios are formed by grouping stocks into portfolios at the
beginning of each calendar year ranking on the estimated factor loadings over the previous 5 years. Equally-weighted,
sequentially sorted portfolios are created and the portfolios are held for 12 months to produce monthly portfolio returns.
The portfolios are rebalanced annually at the beginning of each calendar year. The first estimation period is Jan. 1966 to
Dec. 1970 to produce monthly returns for the calendar year 1971. The last estimation period is Jan. 2010 to Dec. 2014
to produce monthly returns for 2015.

Factor Loadings Ec (β̂) σc (β̂) 5% 95%

All Stocks
β̂MKT 1.02 0.73 −0.01 2.24
β̂SMB 0.94 1.21 −0.52 2.91
β̂HML 0.18 1.21 −1.71 1.93

Portfolios
2×2×2 β̂MKT 1.01 0.20 0.69 1.34

β̂SMB 0.88 0.37 0.35 1.54
β̂HML 0.22 0.29 −0.27 0.67

3×3×3 β̂MKT 1.01 0.23 0.60 1.37
β̂SMB 0.88 0.43 0.24 1.65
β̂HML 0.22 0.34 −0.30 0.74

around 1 after controlling for SMB and HML, and the SMB and HML betas are
between 0 and 1. SMB and HML are 0-cost portfolios, but the beta estimates are
not centered around 0 since the break points used by Fama and French (1993)
to construct SMB and HML are based on NYSE stocks alone rather than on all
stocks. Small stocks tend to skew the SMB and HML loadings to be positive,
especially for the SMB loadings which have a mean of 0.94 for all stocks.

The notable difference for portfolios as compared to stocks is in the distribu-
tion of the beta estimates. Table 7 shows three important effects on the distribution
of betas that result from portfolio formation, similar to those found for the 1-factor
model in Section IV.A.

First, forming portfolios severely reduces the cross-sectional variance in the
betas. For example, the β̂SMB and β̂HML cross-sectional standard deviation is 1.21
for all stocks, but it is cut by more than one-half to 0.37 and 0.29, respectively, for
the 2×2×2 portfolios.

Second, forming portfolios truncates the tails of the beta distribution. The
5th to 95th percentile range for β̂MKT shifts from −0.01 to 2.24 for all stocks
to 0.60 to 1.37 for the 3×3×3 portfolio. Such a difference in the distribution
of betas for portfolios could produce quite different cross-sectional factor risk
premia estimates.

Finally, the fewer stocks that are grouped into each portfolio, the less shrink-
age there is in the dispersion of factor loading estimates and the less tail infor-
mation that is lost. This follows the intuition that the effect of forming portfolios
on risk premia estimation diminishes as portfolios converge to individual stocks
(once there are enough portfolios to put each stock into its own portfolio). We
now estimate Fama–French (1993) factor risk premia for portfolios of different
sizes.
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2. Cross-Sectional Factor Risk Premia

Table 8 reports estimates of the Fama–French (1993) factor risk premia.
Using all stocks in Panel A, we find a positive and significant estimate of the
market risk premium, λ̂MKT=5.05% (very close to the 1-factor model estimate in
Table 5), a positive and significant size factor premium estimate, λ̂SMB=6.79%,
and λ̂HML=0.01, not significantly different from 0 at the 5% level. The portfolios
in Panel B yield very different estimates of factor risk premia in comparison to
all stocks. Notably, the portfolio λ̂MKT are negative. Thus, the sign of the λ̂MKT

and the λ̂HML risk premia depend on the particular choice of test asset used in the
Fama–French (1993) model.

As in the 1-factor model estimation in Section IV.A, the size of the standard
errors on the risk premia estimates shrink and the t-statistics increase, both for
maximum likelihood and GMM, as the number of test assets grows. This supports
the main prediction of our analytical model, that the loss of information from
grouping stocks produces less efficient risk premia estimates. It also follows the
intuition of the model; efficiency loss in the cross-sectional estimation of fac-
tor risk premia is directly related to the drop in cross-sectional dispersion of the
factor loadings that comes from grouping individual assets into portfolios. The

TABLE 8
Estimates of the Fama–French (1993) Model

In Table 8, we report the point estimates α̂, λ̂MKT, λ̂SMB, and λ̂HML in equation (34) over all stocks (Panel A) and various
portfolio sortings (Panel B). The betas are estimated by running a first-pass multivariate OLS regression of monthly excess
stock returns onto the monthly Fama–French (1993) factors (MKT, SMB, and HML) over nonoverlapping 5-year samples
beginning in Jan. 1971 and ending in Dec. 2015. All of the stock returns in each 5-year period are stacked and treated as
one panel. We use a second-pass cross-sectional regression to compute the cross-sectional coefficients. Using these
point estimates we compute the various standard errors (SE) and absolute values of t -statistics (|t -stat|). We compute
the maximum likelihood standard errors (equations (11) and (12)) in the columns labeled ‘‘Max Lik’’ and GMM standard
errors, detailed in Section II and in Appendix B, in the columns labeled ‘‘GMM.’’ We allow for cross-correlated residuals
computed using a 1-factor model or industry classifications, which are described in Appendix F. In Panel B we form
ex ante portfolios by grouping stocks into portfolios at the beginning of each calendar year, ranking on the estimated
factor loadings over the previous 5 years. Equally-weighted, sequentially sorted portfolios are created and the portfolios
are held for 12 months to produce monthly portfolio returns. The portfolios are rebalanced annually at the beginning of
each calendar year. The first estimation period is Jan. 1966 to Dec. 1970 to produce monthly returns for the calendar
year 1971. The last estimation period is Jan. 2010 to Dec. 2014 to produce monthly returns for 2015. After the ex ante
portfolios are created, we follow the same procedure as Panels A and B to compute realized OLS factor loadings in each
nonoverlapping 5-year period and then estimate a second-pass cross-sectional regression. In Panel B, the second-pass
cross-sectional regression is run only on the P portfolio test assets. All estimates are annualized bymultiplying themonthly
estimates by 12.

Residual Factor Model Industry Residual Model

Max Lik GMM Max Lik GMM

No. of Portfolios P Estimate (%) SE |t -Stat.| SE |t -Stat.| SE |t -Stat.| SE |t -Stat.|

Panel A. All Stocks

α̂ 2.43 0.16 14.76 0.91 2.67 0.33 7.41 0.80 3.03
λ̂MKT 5.05 0.16 31.18 0.63 8.05 0.18 28.58 0.47 10.72
λ̂SMB 6.79 0.10 67.17 0.84 8.10 0.11 61.81 0.64 10.59
λ̂HML 0.01 0.11 0.11 0.56 0.02 0.12 0.10 0.44 0.03

Panel B. Portfolios

2×2×2 α̂ 11.01 4.50 2.45 2.49 4.41 1.86 5.93 2.45 4.49
λ̂MKT −5.54 5.19 −1.07 3.51 −1.58 2.16 −2.57 2.87 −1.93
λ̂SMB 11.50 3.74 3.08 1.97 5.85 1.22 9.44 1.40 8.22
λ̂HML 1.64 3.91 0.42 1.93 0.85 1.40 1.17 1.85 0.89

3×3×3 α̂ 10.51 2.52 4.17 2.09 5.03 1.30 8.06 1.74 6.03
λ̂MKT −4.87 2.80 −1.74 2.89 −1.68 1.37 −3.56 1.98 −2.46
λ̂SMB 11.50 2.01 5.72 1.66 6.93 0.76 15.08 0.98 11.70
λ̂HML 0.86 1.95 0.44 1.59 0.54 0.91 0.94 1.23 0.70
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cross-sectional information loss outweighs the efficiency gain from estimating
the factor loadings with portfolios.

3. Tests of Cross-Sectional and Time-Series Estimates

We report the results of the tests of the null H λ=µ

0 for the Fama–French (1993)
model in Table 9. For both individual stocks and portfolios we firmly reject the hy-
pothesis that the cross-sectional risk premia are equal to the mean factor portfolio
returns, for the market risk premium and SMB, using either maximum likelihood
or GMM standard errors. For all stocks we also reject H λ=µ

0 for HML. Using
portfolios, the hypothesis H λ=µ

0 for HML is rejected using maximum likelihood
standard errors, but not with GMM standard errors. All in all, while the market
and size factors are cross-sectionally priced, there is little evidence that the cross-
sectional risk premia are consistent with the time-series of factor returns.

4. Summary

Like the CAPM, the Fama–French (1993) model is strongly rejected in test-
ing H α=0

0 using both individual stocks and portfolios. We find that the MKT and
SMB Fama–French factors do help in pricing the cross section of stocks with
large rejections of H λ=0

0 for individual stocks. However, tests of H λ=µ

0 reject the
hypothesis that the cross-sectional risk premium estimates are equal to the mean
factor returns.

Using individual stocks versus portfolios makes a difference in the precision
with which factor risk premia are estimated. With individual stocks, the MKT
and the HML factor premium are positive, though the latter is not significantly
different from 0. In contrast, the sign of the MKT and the HML factor premia flip,
depending on whether stocks are sorted into portfolios.

TABLE 9
Tests for Hλ=µ

0 (|t-Statistics|) for the Fama–French (1993) Model

Table 9 reports absolute values of t -statistics for testing if the cross-sectional risk premium, λ, is equal to the time-series
mean of the factor portfolio, µ, which is the hypothesis test H λ=µ

0 for the Fama and French (1993) 3-factor model. The
sample time-series means for the 3 factors are: µ̂MKT=6.43%, µ̂SMB=2.16%, and µ̂HML=3.90%. The maximum likeli-
hood test and the GMM test, in the columns labeled ‘‘Max Lik’’ and ‘‘GMM,’’ respectively, are detailed in Section II and
Appendix B. We allow for cross-correlated residuals computed using a 1-factor model or industry classifications, which
are described in Appendix F. Estimates of the cross-sectional factor risk premia are annualized by multiplying the monthly
estimate by 12. The data sample is Jan. 1971–Dec. 2015.

Residual Factor Industry Residuals

No. of Portfolios P Estimate (%) Max Lik GMM Max Lik GMM

All Stocks
λ̂MKT 5.05 8.51 2.20 7.80 2.92
λ̂SMB 6.79 45.83 5.53 42.17 7.23
λ̂HML 0.01 35.91 6.90 31.94 8.90

Portfolios
2×2×2 λ̂MKT −5.54 7.22 3.41 5.55 4.18

λ̂SMB 11.50 8.88 4.75 7.67 6.68
λ̂HML 1.64 2.37 1.17 1.61 1.22

3×3×3 λ̂MKT −4.87 10.38 3.91 8.25 5.71
λ̂SMB 11.50 13.75 5.63 12.25 9.50
λ̂HML 0.86 4.75 1.91 3.33 2.48
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V. Conclusion
The finance literature takes two approaches to specifying base assets in tests

of cross-sectional factor models. One approach is to aggregate stocks into port-
folios. Another approach is to use individual stocks. The motivation for creating
portfolios is originally stated by Blume (1970): betas are estimated with error and
this estimation error is diversified away by aggregating stocks into portfolios. Nu-
merous authors, including Black et al. (1972), Fama and MacBeth (1973), and
Fama and French (1993), use this motivation to choose portfolios as base assets
in factor model tests. The literature suggests that more precise estimates of factor
loadings should translate into more precise estimates and lower standard errors of
factor risk premia.

We show analytically and confirm empirically that this motivation is wrong.
The sampling uncertainty of factor loadings is markedly reduced by grouping
stocks into portfolios, but this does not translate into lower standard errors for
factor risk premia estimates. This is because grouping stocks into portfolios also
diversifies away information contained in individual stock factor loadings. An im-
portant determinant of the standard error of risk premia is the cross-sectional dis-
tribution of risk factor loadings. Intuitively, the more dispersed the cross section of
betas, the more information the cross section contains to estimate risk premia. Ag-
gregating stocks into portfolios loses information by reducing the cross-sectional
dispersion of the betas. While creating portfolios does reduce the sampling vari-
ability of the estimates of factor loadings, the standard errors of factor risk premia
actually increase. It is the decreasing dispersion of the cross section of beta when
stocks are grouped into portfolios that leads to potentially large efficiency losses
in using portfolios versus individual stocks.

In the data, the point estimates of the cross-sectional market risk premium
using individual stocks are positive and highly significant. This is true in both a
1-factor market model specification and the 3-factor Fama–French (1993) model.
For the 1-factor model using all stocks, the cross-sectional market risk premium
estimate of 4.79% per annum is close to the time-series average of the market
excess return, at 6.43% per annum. In contrast, the market risk premium is in-
significant when using portfolios. Thus, using stocks or portfolios as base test
assets can result in very different conclusions regarding whether a particular fac-
tor carries a significant price of risk. Test results from using portfolios converge
to those with all stocks as the number of portfolios becomes large enough to equal
the number of individual stocks.

The most important message of our results is that using individual stocks
permits more efficient tests of whether factors are priced. Moreover, using port-
folios creates an additional layer of potential for data-mining biases. There is still
a bias-variance tradeoff to consider in deciding between using portfolios and in-
dividual stocks if the standard 2-pass methodology is employed, but minimiz-
ing mean square error calls for using a very large number of portfolios, or all
stocks. Furthermore, the bias motivation for portfolios is unclear once full-blown
maximum likelihood estimation, or some other bias-adjusted approach, is used.
Thus, the use of portfolios in cross-sectional regressions ought to be carefully
motivated.
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Appendix A. Derivation of Maximum Likelihood Asymptotic
Variances

We consider the case where the mean of the factors is known. The maximum likeli-
hood estimators for α, λ, and βi are given by:

α̂ =
1
T

∑
t

1′�−1
ε

(Rt − β̂(Ft + λ̂))

1′�−1
ε

1
,(A-1)

λ̂ =
1
T

∑
t

β̂ ′�−1
ε

(Rt − α̂− β̂Ft )

β ′�−1
ε
β

,(A-2)

β̂i =

∑
t

(Ri t − α̂)(λ̂+ Ft )∑
t

(λ̂+ Ft )2
.(A-3)

The information matrix is given by

(A-4)
(

E
[
−

∂2 L
∂2∂2′

])−1

=
1
T

1′�−1
ε

1 1′�−1
ε
β 1′�−1

ε
λ

β ′�−1
ε

1 β ′�−1
ε
β β ′�−1

ε
λ

λ′�−1
ε

1 λ′�−1
ε
β (λ2

+ σ 2
F )�−1

ε

−1

,

where under the null 1
T

∑
t Rt→α+βλ.

To invert this we partition the matrix as:(
A B
C D

)−1

=

(
Q−1

−Q−1 B D−1

−D−1C Q−1 D−1(I +C Q−1 B D−1)

)
,

where Q= A− B D−1C , and

A =

(
1′�−1

ε
1 1′�−1

ε
β

β ′�−1
ε

1 β ′�−1
ε
β

)
, B =

(
1′�−1

ε
λ

β ′�−1
ε
λ

)
,

C = B ′, D = (λ2
+ σ 2

F )�−1
ε
.

We can write Q= A− B D−1 B ′ as(
1−

λ2

λ2+ σ 2
F

)(
1′�−1

ε
1 1′�−1

ε
β

β ′�−1
ε

1 β ′�−1
ε
β

)
.

The inverse of Q is

(A-5) Q−1
=

σ 2
F + λ

2

σ 2
F

1
(1′�−1

ε
1)(β ′�−1

ε
β)− (1′�−1

ε
β)2

(
β ′�−1

ε
β −1′�−1

ε
β

−β ′�−1
ε

1 1′�−1
ε

1

)
.

This gives the variance of α̂ and λ̂ in equations (7) and (8).
To compute the term D−1(I +C Q−1 B D−1) we evaluate

D−1 B ′Q−1 B D−1
=

λ2

σ 2
F (λ2+ σ 2

F )
1

(1′�−1
ε

1)(β ′�−1
ε
β)− (1′�−1

ε
β)2

×�ε

(
β ′�−1

ε
β −1′�−1

ε
β

−β ′�−1
ε

1 1′�−1
ε

1

)(
1′�−1

ε
λ

β ′�−1
ε
λ

)
�ε

=
λ2

σ 2
F (λ2+ σ 2

F )
(β ′�−1

ε
β)11′− (1′�−1

ε
β)β1′− (1′�−1

ε
β)1β ′+ (1′�−1

ε
1)ββ ′

(1′�−1
ε

1)(β ′�−1
ε
β)− (1′�−1

ε
β)2

.
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Thus,

D−1
+ D−1C Q−1 B D−1

=(A-6)
1

λ2+ σ 2
F

[
�ε +

λ2

σ 2
F

(β ′�−1
ε
β)11′− (1′�−1

ε
β)β1′− (1′�−1

ε
β)1β ′+ (1′�−1

ε
1)ββ ′

(1′�−1
ε

1)(β ′�−1
ε
β)− (1′�−1

ε
β)2

]
.

This gives the variance of β̂i in equation (9).
To compute the covariances between (α̂, λ̂) and β̂i , we compute

−Q−1 B D−1
=(A-7)

λ

σ 2
F

1
(1′�−1

ε
1)(β ′�−1

ε
β)− (1′�−1

ε
β)2

(
(1′�−1

ε
β)β ′− (β ′�−1

ε
β)1′

(β ′�−1
ε

1)1′− (1′�−1
ε

1)β ′

)
.

This yields the following asymptotic covariances:

cov(α̂, λ̂) =
1

N T
σ 2

F + λ
2

σ 2
F

−Ec(β/σ 2)
varc(β/σ 2)− covc(β2/σ 2,1/σ 2)

,(A-8)

cov(α̂, β̂i ) =
1

N T
λ

σ 2
F

βi Ec(β/σ 2)−Ec(β2/σ 2)
varc(β/σ 2)− covc(β2/σ 2,1/σ 2)

,

cov(λ̂, β̂i ) =
1

N T
λ

σ 2
F

Ec(β/σ 2)−βi Ec(1/σ 2)
varc(β/σ 2)− covc(β2/σ 2,1/σ 2)

.

Appendix B. Multiple Factors and GMM
We work with the data-generating process with potentially multiple factors:

(B-1) Rt = α+ Bλ̃+ B F̃t + εt ,

with the distribution-free assumption that E[εt ]=0 for K factors in F̃t with mean µ and N
stocks in Rt . We write this as

(B-2) R̃t ≡ Rt − B F̃t = Xγ + εt ,

for γ =[α λ̃] which is K +1 and X=[1 B] which is N× (K +1). We test H λ=µ

0 by testing
λ̃=0.

The Fama–MacBeth (1973) estimator is given by running cross-sectional regressions
at time t :

γ̂t = (X̂ ′W X̂ )−1 X̂ ′W R̃t ,

for weighting matrix W , X̂=[1 B̂], and then averaging across all γ̂t :

(B-3) γ̂ =
1
T

∑
γt = (X̂ ′W X̂ )−1 X̂ ′W ¯̃R,

where ¯̃R= 1
T

∑
R̃t . The beta estimates are given by time-series regressions:

(B-4) B̂ =

[
1
T

∑
(R̃t −

¯̃R)(F̃t −
¯̃F)′
]
6̂−1

F ,

where ¯̃F≡ µ̂= 1
T

∑
F̃t and 6̂F=

1
T

∑
(F̃t−

¯̃F)(F̃t−
¯̃F)′.
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Assume the moment conditions

E[h1t ] = E[R̃t −ER̃t ] = 0 (N × 1),(B-5)

E[h2t ] = E
[
[(F̃t −EF̃t )′6−1

F λ]εt

]
= 0 (N × 1),

with h t= (h1t h2t ) satisfying the Central Limit theorem

1
√

T

∑
h t

d
→ N (0,6h),

where

6h =

[
6ε 0
0 (λ′6−1

F λ)6ε

]
.

The Fama–MacBeth estimator is consistent, as shown by Cochrane (2005) and
Jagannathan et al. (2002), among others. To derive the limiting distribution of γ̂ , define
D= (X ′W X )−1 X ′W with its sample counterpart D̂ and write

γ̂t = D̂ R̃t

= D̂[X̂γ + (B− B̂)λ+ R̃t − Xγ ],
γ̂t − γ = D̂[(B− B̂)λ+ (R̃t −ER̃t )].

Thus, the asymptotic distribution is given by

√
T
(

1
T

∑
γ̂t − γ

)
= D̂

[
−

1
√

T

∑
εt (F̃t −

¯̃F)′6̂−1
F λ+

1
√

T

∑
(R̃t −ER̃t )

]
(B-6)

d
→ D

[
IN 0
0 −IN

]
1
√

T

∑
h t

d
→ N (0,6γ ),

where

(B-7) 6γ = (1+ λ′6−1
F λ)D�εD′.

Note the E[h2t ] set of moment conditions define the factor betas. We refer to the case where
W = I as “GMM” standard errors, which are given by

(B-8) 6γ = (1+ λ′6−1
F λ)(X ′X )−1 X ′�εX (X ′X )−1.

For the choice of W =�−1
ε

we have

(B-9) 6γ = (1+ λ′6−1
F λ)(X ′�−1

ε
X )−1,

which is the same as maximum likelihood. Equation (B-9) is the matrix counterpart of
equations (7) and (8) in the main text for a single factor model. We use equation (B-9) to
compute maximum likelihood standard errors for multiple factors.

It is instructive to note the difference with Shanken (1992). Consider the model

Rt = α+ Bλ+ B(F̃t −µ)+ εt .

To derive the Shanken (1992) standard errors for the Fama–MacBeth estimates γ̂ =[α̂ λ̂],
set up the moment conditions

E[h∗1t ] = E[Rt −ERt ] = 0,

E[h∗2t ] = E
[
[(F̃t −EF̃t )′6−1

F λ]εt

]
= 0.
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The difference between the Shanken test and our test is that we use the moment conditions
E[h1t ] which utilize R̃t in equation (B-5) rather than the moment conditions E[h∗1t ]. Both
cases use the same Fama–MacBeth estimator in equation (B-3). With the following Central
Limit Theorem for h t= (h∗1t h∗2t ):

1
√

T

∑
h∗t

d
→ N (0,6∗h ),

where

6∗h =

[
B6F B ′+6ε 0

0 (λ′6−1
F λ)6ε

]
,

we can derive the Shanken (1992) standard errors (see also Jagannathan et al. (2002)). For
the case of K =1, the standard errors of γ̂ reduce to those in equation (18).

Appendix C. The Approach of Fama and French (1992)
In the second-stage of the Fama and MacBeth (1973) procedure, excess returns, Ri ,

are regressed onto estimated betas, β̂i yielding a factor coefficient of

λ̂ =
cov(Ri , β̂i )

var(β̂i )
.

In the approach of Fama and French (1992), P portfolios are first created and the
individual stock betas are then assigned to be the portfolio beta to which that stock belongs,
as in equation (22). The numerator of the Fama–MacBeth coefficient can be written as:

cov(Ri , β̂i ) =
1
N

∑
i

(Ri − R̄)(β̂i − β̄)(C-1)

=
1
P

∑
p

(
1

(N/P)

∑
i∈p

(Ri − R̄)

)
(β̂p − β̄)

=
1
P

P∑
p=1

(R̂p − R̄)(β̂p − β̄)

= cov(R̂p, β̂p),

where the first to the second line follows because of equation (22). The denominator of the
estimated risk premium is

var(β̂i ) =
1
N

∑
i

(β̂i − β̄)2(C-2)

=
1
P

∑
p

1
(N/P)

∑
i∈p

(β̂i − β̄)2

=
1
P

P∑
p=1

(β̂p − β̄)2

= var(β̂p),

where the equality in the third line comes from β̂p= β̂i for all i ∈ p, with N/P stocks in
portfolio p having the same value of βp for their fitted betas. Thus, the Fama and French
(1992) procedure will produce the same Fama–MacBeth (1973) coefficient as using only
the information from p=1, . . . , P portfolios.
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Appendix D. Cross-Sectional Moments For Normally
Distributed Betas

We assume that stocks have identical idiosyncratic volatility, σ , and so idiosyncratic
volatility does not enter into any cross-sectional moments with beta. If beta is normally
distributed with mean µβ and standard deviation σβ , the relevant cross-sectional moments
are:

Ec(β2) = σ 2
β
+µ2

β
,(D-1)

varc(β2) = σ 2
β
.

We form P portfolios, each containing equal mass of ordered betas. Denoting N (·)
as the cumulative distribution function of the standard normal, the critical points δp corre-
sponding to the standard normal are

(D-2) N (δp) =
p
P

, p = 1, . . . , P − 1,

and we define δ0=−∞ and δP=+∞. The points ζp, p=1, . . . , P−1 that divide the stocks
into different portfolios are given by

(D-3) ζp = µβ + σβδp.

The beta of portfolio p, βp, is given by:

(D-4) βp =

∫ δp

δp−1

(µβ + σβδ)e−
δ2
2

dδ
√

2π∫ δp

δp−1

e−
δ2
2

dδ
√

2π

= µβ +
Pσβ
√

2π

(
e−

δ2p−1
2 − e−

δ2p
2

)
.

Therefore, the cross-sectional moments for the P portfolio betas are:

Ec[βp] = µβ ,(D-5)

Ec[β
2
p] =

1
P

P∑
p=1

(
µβ +

Pσβ
√

2π

(
e−

δ2p−1
2 − e−

δ2p
2

))2

= µ2
β
+ P

σ 2
β

2π

P∑
p=1

(
e−

δ2p−1
2 − e−

δ2p
2

)2

,

varc[βp] = P
σ 2
β

2π

P∑
p=1

(
e−

δ2p−1
2 − e−

δ2p
2

)2

.

Appendix E. Factor Risk Premia and Characteristics
Consider the following cross-sectional regression:

(E-1) Ri t = α+βiλ+ ziγ +βi Ft + σiεi t ,

where zi is a firm-specific characteristic, the variance of Ft is σ 2
F , and εi t is IID N (0,1) with

εi t uncorrelated across stocks i for simplicity. Assume that α, σi , and σi are known and the
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parameters of interest are 2= (λγ βi ). We assume the intercept term α is known to make
the computations easier. The information matrix is given by

(E-2)
(

E
[
−

∂2 L
∂2∂2′

])−1

=
1
T



∑
i

β2
i

σ 2
i

∑
i

βi zi

σ 2
i

βiλ

σ 2
i∑

i

βi zi

σ 2
i

∑
i

z2
i

σ 2
i

ziλ

σ 2
i

βiλ

σ 2
i

ziλ

σ 2
i

λ2
+ σ 2

F

σ 2
i



−1

.

Using methods similar to Appendix A, we can derive var(λ̂) and var(γ̂ ) to be

var(λ̂) =
1

N T
σ 2

F + λ
2

σ 2
F

Ec(z2/σ 2)
varc(zβ/σ 2)− covc(β2/σ 2, z2/σ 2)

,(E-3)

var(γ̂ ) =
1

N T
σ 2

F + λ
2

σ 2
F

Ec(β2/σ 2)
varc(zβ/σ 2)− covc(β2/σ 2, z2/σ 2)

,

where we define the cross-sectional moments

Ec(z2/σ 2) =
1
N

∑
j

z2
j

σ 2
j

,(E-4)

Ec(β2/σ 2) =
1
N

∑
j

β2
j

σ 2
j

,

varc(zβ/σ 2) =

(
1
N

∑
j

z2
jβ

2
j

σ 4
j

)
−

(
1
N

∑
j

z jβ j

σ 2
j

)2

,

covc(z2/σ 2,β2/σ 2) =

(
1
N

∑
j

z2
jβ

2
j

σ 4
j

)
−

(
1
N

∑
j

z2
j

σ 2
j

)(
1
N

∑
j

β2
j

σ 2
j

)
.

Appendix F. Standard Errors with Cross-Correlated Residuals
We compute standard errors taking into account cross-correlation in the residuals us-

ing two methods: specifying a 1-factor model of residual comovements and using industry
factors.

1. Residual 1-Factor Model
For the 1-factor model, we assume that the errors for stock or portfolio i in month t

have the structure

(F-1) εi t = ξi u t + vi t ,

where u t∼N (0,σ 2
u ) and vi t∼N (0,σ 2

vi ) is IID across stocks i=1, . . . , N . We write this in
matrix notation for N stocks:

(F-2) εt = 4u t +6vvt ,

where 4 is a N×1 vector of residual factor loadings, 6v is a diagonal matrix containing
{σ 2

vi}, and vt= (v1t , . . . ,vNt ) is a N×1 vector of shocks. The residual covariance matrix, �ε ,
is then given by

(F-3) �ε = 4σ 2
u4

′
+6v.

https://doi.org/10.1017/S0022109019000255
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . U
niversity of Pennsylvania Libraries , on 10 O

ct 2019 at 21:26:49 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s .

https://doi.org/10.1017/S0022109019000255
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


40 Journal of Financial and Quantitative Analysis

We estimate u t by the following procedure. We denote ei t as the fitted residual for
asset i at time t in the first-pass regression

(F-4) ei t = Ri t − âi − β̂i Ft .

We take an equally weighted average of residuals, ũ t ,

(F-5) ũ t =
1
N

∑
i

ei t ,

and construct u t to be the component of ũ t orthogonal to the factors, Ft , in the regression

(F-6) ũ t = c0+ c1 Ft + u t .

We set σ̂ 2
u to be the sample variance of u t . To estimate the error factor loadings, ξi , we

regress ei t onto u t for each asset i . The fitted residuals are used to obtain estimates of σ 2
vi .

This procedure obtains estimates 4̂ and 6̂v .

2. Industry Residual Model
In the industry residual model, we specify ten industry portfolios: durables, non-

durables, manufacturing, energy, high technology, telecommunications, shops, healthcare,
utilities, and other. The Standard Industrial Classification (SIC) definitions of these indus-
tries follow those constructed by Kenneth French at http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/Data Library/det 10 ind port.html. We assume that the errors for stock
or portfolio i have the structure

(F-7) εi t = ξ ′i u t + vi t ,

where ξi is a 10×1 vector of industry proportions, the j th element of which is the fraction
of stocks in portfolio i that belong to industry j . If i is simply a stock, then one element of
ξi is equal to one corresponding to the industry of the stock and all the other elements are
equal to 0. The industry factors are contained in u t , which is a 10×1 vector of industry-
specific returns. We assume u t∼N (0,6u). We can stack all N stocks to write in matrix
notation:

(F-8) �ε = 46u4
′
+6v ,

where 4 is N×10 and 6v is a diagonal matrix containing {σ 2
vi}.

The industry residuals are specified to be uncorrelated with the factors Ft . To estimate
6u , we regress each of the 10 industry portfolios onto Ft in time-series regressions, giving
industry residual factors u j t for industry j . We estimate6u as the sample covariance matrix
of {u j t}.

To estimate 6v , we take the residuals ei t for asset i in equation (F-4) and define

(F-9) v̂i t = ei t − ξ̂
′

i u t .

We estimate 6v to be the sample covariance matrix of {v̂i t}.
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